UNIVERSID	ADE	FEDER	AL DE	VICOSA
-----------	-----	--------------	-------	---------------

GAETAN OLIVEIRA HELFENSTEIN

PRODUTIVIDADE E ESTRUTURA HORIZONTAL DE POVOAMENTOS CLONAIS DE EUCALIPTO EM DIFERENTES SÍTIOS E ESPAÇAMENTOS DE PLANTIO

GAETAN OLIVEIRA HELFENSTEIN

PRODUTIVIDADE E ESTRUTURA HORIZONTAL DE POVOAMENTOS CLONAIS DE EUCALIPTO EM DIFERENTES SÍTIOS E ESPAÇAMENTOS DE PLANTIO

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Ciência Florestal, para obtenção do título de *Magister Scientiae*.

Orientador: Helio Garcia Leite

Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

Т

Helfenstein, Gaetan Oliveira, 1992-

H474p 2020 Produtividade e estrutura horizontal de povoamentos clonais de eucalipto em diferentes sítios e espaçamentos de plantio / Gaetan Oliveira Helfenstein. – Viçosa, MG, 2020.

40f.: il.; 29 cm.

Orientador: Helio Garcia Leite.

Dissertação (mestrado) - Universidade Federal de Viçosa.

Referências bibliográficas: f.38-40.

1. Área basal. 2. Florestas - Manejo. 3. Densidade de plantio. 4. *Eucalyptus* - Crescimento. I. Universidade Federal de Viçosa. Departamento de Engenharia Florestal. Programa de Pós-Graduação em Ciência Florestal. II. Título.

CDD 22 ed. 634.952162

GAETAN OLIVEIRA HELFENSTEIN

PRODUTIVIDADE E ESTRUTURA HORIZONTAL DE POVOAMENTOS CLONAIS DE EUCALIPTO EM DIFERENTES SÍTIOS E ESPAÇAMENTOS DE PLANTIO

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Ciência Florestal, para obtenção do título de *Magister Scientiae*.

APROVADA: 18 de fevereiro de 2020

Assentimento:

Gaetan Oliveira Helfenstein

Autor

Helio Garcia Leite Orientador

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Também devo agradecer à FAPEMIG e ao CNPq pelos meses de bolsa que me deram uma tranquilidade que nem todo estudante de mestrado tem. Por me ajudarem nesta conquista, muito obrigado aos membros do Departamento de Engenharia Florestal, sem deixar de citar o atual chefe e professor Valverde, a sua secretária Jussara, além de cada pessoa dedicada ali, a Julien, a Marquione, a Marina, a Bete, o Alexandre, o Dílson, o Chiquinho, o Tadeu, o Paulo, dentro da biblioteca setorial, meus agradecimentos aos caros Adilson e Lourenço que sempre estiveram à disposição para ajudar, com respeito e seriedade. Em outros departamentos, tenho imensa gratidão aos professores Cecon de Métodos estatísticos e Ambrósio de Sociologia do desenvolvimento. No DEF sou grato aos colegas da Pós que estudavam na salinha e também no andar do meio, como o doutorando Samuel do projeto Carbono 0 e o PhD em manejo, Fardin. Dentre os mestres que me deram aula, não posso deixar de mencionar prof. Carlinhos, Jacovine, Alexandre, Angeline, Gumercindo e por último, mas para mim o mais importante, prof. Helio que juntamente com os professores Haroldo e Gilciano, reitor da UFVJM, compôs a minha banca para defesa da dissertação de mestrado.

Muitíssimo obrigado aos meus irmãos da Igreja Presbiteriana de Viçosa assim como da Comunidade Presbiteriana de Viçosa e Associação Bíblica Universitária. Em Cristo somos um só corpo, um só espírito, cujo o Pai nosso que está no céu nos enviou para ficar conosco até a volta do Filho. Agradeço aos meus avós, mãe e irmã pelos exemplos de fé, esperança e amor... parentes, amigos, além de cada pessoa que me acompanhou durante esses anos de sacrifícios e finalmente de vitórias, não somente pelos diplomas, mas em especial com aprendizados de vida.

RESUMO

HELFENSTEIN, Gaetan Oliveira, Universidade Federal de Viçosa, fevereiro de 2020. **Produtividade e estrutura horizontal de povoamentos clonais de eucalipto em diferentes sítios e espaçamentos de plantio.** Orientador: Helio Garcia Leite.

Um crescimento muito rápido nos primeiros anos de um povoamento de eucalipto pode causar uma redução severa na produtividade em idade fixa de rotação regulatória, em geral de 7 anos. Neste estudo foram avaliados os efeitos de três fatores importantes no desenvolvimento de híbridos de Eucalyptus urophylla × Eucalyptus grandis, em regime de alto fuste. São estes: espaçamento, clone ou genótipo e sítio que difere no tipo de solo. Foi analisado o efeito da aceleração inicial sobre a redução na produtividade média, ao final de rotações regulatórias com 6 e 7 anos, em relação às produtividades observadas aos 2, 3 e 4 anos de idade. Uma nova alternativa de identificação da estagnação dos ingressos de árvores em sucessivas classes de diâmetro foi proposta e avaliada neste estudo. Os dados foram provenientes de um experimento de espaçamento instalado no sul da Bahia com dois genótipos, dois tipos de solos (Argissolo e Latossolo) e cinco arranjos espaciais, indo desde 6 m² até 15 m² de área útil por planta. O estudo permitiu concluir que: para espaçamentos reduzidos, como 3×2 m e 3×3 m, quanto antes for a maximização da taxa de crescimento, maior será a diferença entre incrementos médios anuais aos 7 anos (IMA7) e IMAs aos 2, 3 e 4 anos. De modo geral, pode-se concluir também que, um crescimento muito acelerado nas idades iniciais pode resultar em redução na produtividade média em idades fixas de 6 e 7 anos. A alternativa proposta neste estudo para identificar a idade de estagnação dos ingressos de árvores em novas classes de diâmetro é eficiente e de aplicação muito simples. A rotação com base na maximização da produtividade média e na estagnação dos ingressos de árvores em classes de diâmetro à altura do peito (dap) alternou de 5 a 6 anos.

Palavras-chave: Área basal. Florestas – Manejo. Densidade de plantio. *Eucalyptus* - Crescimento.

ABSTRACT

HELFENSTEIN, Gaetan Oliveira, Universidade Federal de Viçosa, February, 2020. **Productivity and horizontal structure of** *Eucalyptus* **clonal populations in different sites and spacing of plantation**. Adviser: Helio Garcia Leite.

An initial greatly rapid growth in a plantation of *Eucalyptus* trees can cause a severe productive reduction on a regulatory rotation fixed age of usually 7 years. Thus, the general objective of this study consisted in evaluate the effects of three important factors on clones of *Eucalyptus* urophylla × Eucalyptus grandis on a high forest system. The spacing, genotype and soil order. Furthermore, the initial acceleration effect in mean productive reduction at the end of regulatory rotations with 6 and 7 years old, compared to the observed productivity with 2, 3 and 4 years old. This study proposed and evaluated an alternative to identify the age of tree ingrowth stagnation on new diameter classes. Therefore, a selected experiment on the southern region of Bahia state provided the following: two genotypes, two orders of soil (Ultisol and Oxisol) and five different spacing sizes, from 6 m² to 15 m². The research leads to the conclusion that in smaller spacing, such as 3×2 m and 3×3 m, the sooner a maximization of the ingrowth rate is the larger will be the difference between MAI7 and MAI2. In general, one can also conclude that much accelerated growth rhythm, on early stages, may result in mean productive reduction for fixed ages of 6 and 7 years. The proposed alternative to identify the age of tree ingrowth stagnation on new diameter classes is efficient and easy to replicate. The rotation based on mean productivity maximization as well as tree ingrowth stagnation on new diameter classes vary between 5 and 6 years old.

Keywords: Basal area. Forest – Management. Plantation density. *Eucalyptus* - Growth.

SUMÁRIO

1.	INTRODUÇÃO	7
2.	OBJETIVOS	9
3.	MATERIAL E MÉTODOS	10
3.1	Dados	10
3.2	Modelagem de Crescimento e Produção	10
3.3	Testes de Identidade de Modelo	11
3.4	Modelagem da Estrutura Horizontal e Ingressos Percentuais	12
3.5	Migração das Árvores nas Classes de Diâmetro e de Altura Total	14
4.	RESULTADOS E DISCUSSÃO	15
4.1	Modelagem de Crescimento e Produção.	15
4.2	Modelagem da Estrutura Horizontal e Ingressos Percentuais	23
4.3	Migração das Árvores nas Classes de Diâmetro e Altura Total	33
5.	CONCLUSÃO	37
6.	REFERÊNCIAS BIBLIOGRÁFICAS	38

1 - INTRODUÇÃO

A taxa de crescimento inicial do povoamento depende dos fatores de crescimento, do espaçamento e do genótipo (CAMPOS & LEITE, 2017). O espaçamento é um dos fatores que afetam o crescimento, por influenciar o acesso à água, à radiação e aos nutrientes (ZENNER & HIBBS, 2000; SKOVSGAARD & VANCLAY, 2013; SOARES *et al.*, 2017).

Se o crescimento for muito acelerado em idades iniciais e o ambiente não suportar essa aceleração por um tempo suficiente, a produtividade, em uma idade fixa, pode ser reduzida. Um fator preponderante na tendência de crescimento é o espaçamento inicial (LEITE *et al.*, 2006), além do genótipo e da capacidade produtiva do local (SANTOS *et al.*, 2017). Além de influenciar na tendência de crescimento das árvores, o espaçamento tem relação direta com a ocorrência de árvores suprimidas por ocasião do corte raso. Árvores com sistemas radiculares mal desenvolvidos tendem a ser suprimidas e esse desenvolvimento está associado à capacidade das árvores de captar os recursos de crescimento (BINKLEY & FISHER, 2013; CAMPOS *et al.*, 2014; FORRESTER *et al.*, 2010).

Apesar de certa unanimidade entre pesquisadores, quanto ao fato do espaçamento ser um dos fatores que influenciam o crescimento e a produtividade em povoamentos de eucalipto (SCHEEREN et al., 2004), grande parte das pesquisas divulgadas trazem um certo viés nas interpretações desse efeito. Isso ocorre por dois motivos principais: pela análise estatística, de certo modo, equivocada (por meio de análise de variância e testes de médias para uma das medições feita em uma idade fixa) ou pelo fato de se atribuir os efeitos ao espaçamento quando na verdade ainda não houve nenhum sinal de competição entre as árvores, com diferenças apenas devido à maior frequência de árvores. Em relação à análise estatística dos dados experimentais, Campos e Leite (2017) indicam o emprego de análise de regressão como mais eficiente do que a análise de variância seguida da aplicação de testes de médias.

Sereghetti *et al.* (2015), Gouveia Jr *et al.* (2016) e Reiner *et al.* (2011) são alguns exemplos de estudos sobre efeitos do espaçamento, com análises em idades muito jovens. Nesses e em outros estudos, conclui-se que as maiores produções serão encontradas nos menores espaçamentos, mas provavelmente nas idades avaliadas ainda não deveria ter ocorrido competição pelos fatores de crescimento. Silveira *et al.* (2014) verificaram maior produção em menores espaçamentos e isto pode ser atribuído à maior população final nesses espaçamentos, em relação aos espaçamentos maiores.

Em muitos casos as conclusões apontam para maiores produções nos menores espaçamentos e isso pode levar à ideia de que esses são os espaçamentos mais indicados. Ocorre

que na maioria das publicações encontradas, as análises são feitas em uma idade fixa e muitas vezes precoce (KRUSCHEWSKY *et al.*, 2007; SETTE JR. *et al.*, 2010) Análises sobre efeitos do espaçamento com bases em resultados de idades iniciais podem ser conclusivas apenas para casos de plantios muito adensados, como no estudo de Müller *et al.* (2005). Em plantios convencionais a idade para análise deveria ser pelo menos igual a rotação regulatória.

Em um estudo mais completo, Morais (2006) testou espaçamentos 3×2 m, 6×2 m, 6×3 m, 6×4 m e 12×2,5 m com as avaliações feitas nas idades de 12 a 84 meses. A análise dos dados foi feita por meio de modelagem do crescimento, sendo concluído que a altura das árvores apresentou pouca variação entre os espaçamentos estudados. Esse autor ressaltou a importância do emprego de modelagem para a análise de dados de experimentos de espaçamento.

De modo geral, assim como observado por Marcolino (2010), na maioria das vezes o efeito do espaçamento sobre o diâmetro e volume individual, bem como sobre a produção de madeira por hectare, é mais marcante do que o efeito sobre a altura. Segundo Campos e Leite (2017), o efeito menos pronunciado da densidade sobre a altura das árvores é um dos motivos para o uso da variável altura dominante, em estudos sobre classificação da capacidade produtiva de povoamentos.

2 - OBJETIVOS

O objetivo geral do estudo foi avaliar o efeito do espaçamento, genótipo e tipo de solo sobre a aceleração inicial do crescimento, e o efeito desta aceleração sobre a redução na produtividade média ao final das rotações regulatórias de 6 e 7 anos, em relação às produtividades observadas aos 2, 3 e 4 anos de idade.

Os objetivos específicos foram:

- ✓ Modelar a produção e determinar a idade técnica de corte para cada tipo de solo, genótipo e espaçamento;
- ✓ Modelar a distribuição de diâmetro de cada genótipo em cada tipo de solo e espaçamento;
- ✓ Quantificar o ingresso de árvores em sucessivas classes de diâmetro, modelar esse ingresso e propor um método para identificar a idade de sua estagnação;
- ✓ Quantificar o número de vezes que as árvores, de diferentes tamanhos numa idade inicial, migram de classe de diâmetro e de altura ao longo de uma rotação de 7 anos, em cada tipo de solo, genótipo e espaçamento de plantio;
- ✓ Comparar as idades técnicas de corte, determinadas com base na maximização da produtividade média em volume por hectare (incremento médio anual − *IMA*), com as respectivas idades definidas pelo procedimento proposto no estudo.

3 - MATERIAL E MÉTODOS

3.1 - Dados

Os dados para este estudo foram provenientes de um experimento com clones de *Eucalyptus urophylla* × *Eucalyptus grandis*, instalado no esquema fatorial: dois tipos de solo (Argissolo e Latossolo), dois genótipos (G1 e G2) e cinco espaçamentos (4×3,75 m, 5×2,4 m, 4×3 m, 3×3 m e 3×2 m), com delineamento em blocos ao acaso com quatro repetições. O experimento foi instalado na região Sul da Bahia, com as características indicadas na Tabela 1.

Tabela 1 - Tipo de solo, precipitação pluviométrica média anual e temperaturas mínimas, médias e máximas anual no local de instalação do experimento, no sul da Bahia

Genótipos	IMA7	Tipo de Solo	Precipitação	T. médias	T. máx.	T. mín.
G1; G2	71,7 m ³ /ha/ano	Argissolo	1498 mm	23°C	28°C	20°C
G1; G2	42,8 m ³ /ha/ano	Latossolo	1075 mm	22°C	27°C	20°C

A altura total de cada árvore (*Ht*) foi medida utilizado um clinômetro Suunto com precisão de 0,5 m e a circunferência do fuste a 1,3 m de altura, com uma fita métrica na precisão de 0,5 cm, sendo posteriormente convertida em diâmetro (*dap*). Essas medições foram feitas anualmente, começando com 1 ano de idade até cerca de 8 anos. Porém, somente dados mensurados a partir do segundo ano de medição (1,5 a 2,5 anos de idade) foram utilizados no estudo.

O volume com casca foi estimado utilizando equações obtidas ao ajustar o modelo de Schumacher e Hall (1933), na sua forma logarítmica, aos dados de árvores-amostra abatidas para cubagem ao final da condução do experimento: $LnV = \beta_0 + \beta_1 Lndap + \beta_2 LnHt + Ln\varepsilon$, em que: $V = \text{volume do fuste (m}^3 \text{ de lenho} + \text{casca)}$; dap = diâmetro (cm) a 1,3m; Ht = altura total (m); Ln = logaritmo neperiano; $\beta_i = \text{parâmetros}$; $\varepsilon = \text{erro aleatório}$.

3.2 - Modelagem de Crescimento e Produção

Inicialmente foi testado o modelo de regressão sigmoide Gompertz disponível no *software* Curve Expert (HYAMS, 2018), para cada combinação de espaçamento, local e genótipo.

Foram utilizados os *softwares* Curve Expert e Microsoft Excel para as análises estatísticas. Com o primeiro foram estimados os parâmetros do modelo sigmoide mencionado. O Microsoft Excel foi utilizado para processamento do banco de dados e para análises de variâncias com os testes de identidade para comparação das equações ajustadas pelo Curve Expert. O Microsoft Excel ainda foi empregado na modelagem das distribuições de diâmetro e elaboração de gráficos e tabelas.

3.3 - Testes de Identidade de Modelos

De posse das equações ajustadas foram aplicados testes de identidade de modelos (REGAZZI & SILVA, 2010), para avaliar a igualdade entre as curvas de produção ajustadas por espaçamento, genótipo e local, para um nível de significância de 5%. As equações finais foram utilizadas para estimar a idade técnica de corte para cada combinação desses fatores e para gerar tabelas e curvas de produção. O esquema da análise de variância é apresentado na Tabela 2 e, conforme Santos *et al.* (2017), segue que:

- a) $SQTotal_{nc} = Y'Y = \sum_{h=1}^{H} \sum_{i=1}^{nH} y_{hi}^2$, com n graus de liberdade, sendo n_h o número de observações de Y no $case\ h$.
- b) SQParC = $\sum_{i=1}^{H} \beta'_h X'_h Y_h = \sum_{h=1}^{H} [y'_h y_h (y_{hi} \hat{y_{hic}})^2]$, sendo $\hat{y_{hic}}$ o valor estimado de Y para a i-ésima observação do caso h, utilizando o modelo completo. O número de graus de liberdade é p_1 , que é o número de coeficientes no modelo completo.
- c) SQParR = $\sum_{i=1}^{H} \beta'_h X'_h Y_h = \sum_{h=1}^{H} [y'_h y_h (y_{hi} \hat{y_{hir}})^2]$, sendo $\hat{y_{hir}}$ o valor estimado de Y para a i-ésima observação do caso h, utilizando o modelo reduzido. O número de graus de liberdade é p_2 , que é o número de coeficientes no modelo reduzido.
- d) $SQRH_0 = SQParC SQParR$, com p_1-p_2 graus de liberdade (g.l.);
- e) SQRes = SQTnc SQParC SQBlocosh, com $n-p_1$ -g.l._{Blocos(b)}.

Tabela 2 - Esquema de análise de variância para testar a identidade de modelos de regressão

Fonte de variação	G.L.	S.Q.	Q.M.	F	p-valor
Parâmetros (C)	P1	SQParC			
Parâmetros (R)	P2	SQParR			
Redução devido Ho	C-R	SQRHo	QMRHo	QMRHo/QMRes	
Resíduo	n-p1-g.l. _b	SQRes	QMRes		
Total	n	SQTotal _{nc}			

Para um dado conjunto de casos *H*, as hipóteses podem ser avaliadas aos pares ou envolvendo mais de dois casos. No presente estudo, elas se tratam das equações de produção dos cinco espaçamentos, para cada combinação de tipo de solo e cada genótipo selecionado.

As equações de produção individuais de cada caso foram utilizadas para determinar a idade de máximo incremento corrente anual (*ICA*), ou seja, quando a aceleração do crescimento é nula. Com as equações de produção foram estimadas as produções e produtividades médias (*V* e *IMA*) nas idades de 2 a 7 anos. Em seguida, foram calculadas as diferenças percentuais das produtividades estimadas para 6 e 7 anos, em relação àquelas estimadas para 2, 3 ou 4 anos:

- a) 100 (IMA7 IMA2) / IMA2
- b) 100 (*IMA*7 *IMA*3) / *IMA*3
- c) 100 (IMA7 IMA4) / IMA4
- d) 100 (IMA6 IMA2) / IMA2
- e) 100 (IMA6 IMA3) / IMA3
- f) 100 (IMA6 IMA4) / IMA4

As diferenças percentuais em *IMA* foram relacionadas com idades de máximo *ICA*, visando avaliar possíveis reduções de produtividade de 2, 3 e 4 para 7 e 6 anos e a relação com a aceleração inicial do crescimento. Analisou-se, portanto, as relações y = f(x), com y sendo as diferenças percentuais indicadas anteriormente e a variável x referente à idade de máximo *ICA*.

3.4 - Modelagem da Estrutura Horizontal

Para cada parcela e medição, em cada tipo de solo, espaçamento e clone, a função densidade de probabilidade Weibull de dois parâmetros (escala e forma) foi ajustada aos dados de diâmetro. Disso, então resultaram 560 pares de estimativas dos parâmetros da função (dois clones x dois tipos de solos x cinco espaçamentos x quatro repetições x sete medições). Os ajustes foram feitos pelo método da máxima verossimilhança.

As estimativas dos parâmetros de escala e de forma foram obtidas maximizando o logaritmo da função de verossimilhança, ou seja, resolvendo o seguinte modelo de programação

$$\max \ L(\gamma, \beta/x) = n\log(\gamma) - \gamma n\log(\beta) + (\gamma - 1)\sum_{i=1}^{n} \log(x_i) - \sum_{i=1}^{n} \left(\frac{x_i}{\beta}\right)^{\gamma}$$
 matemática não linear:

para: $\beta \ge 0$; $\gamma \ge 0$; x >; e n > 0.

em que: γ é o parâmetro de forma, β é o de escala e n equivale ao número de observações da

variável aleatória contínua
$$x_i$$
. A função Weibull 2P é definida por:
$$\mathcal{F}(X) = \frac{\gamma}{\beta} \left(\frac{X}{\beta}\right)^{\gamma-1} e^{-\left(\frac{\gamma}{\beta}\right)^{\gamma}}$$

para: X = variável aleatória contínua; $\beta = \text{parâmetro de escala}$; $\gamma = \text{parâmetro de forma}$. $X \ge 0$; $\beta > 0$; $\gamma > 0$.

A distribuição de X (forma cumulativa da função Weibull 2P), é definida por:

$$F(X) = 1 - e^{-\left(\frac{X-\alpha}{\beta}\right)^{\gamma}}$$

em que: F(X) é a proporção de árvores com $x_i \le X$. A partir da distribuição, segue que:

$$Ln(1 - F(X)) = -\left(\frac{X}{\beta}\right)^{\gamma}, -Ln(1 - F(X)) = \left(\frac{X}{\beta}\right)^{\gamma};$$

 $Ln(-Ln(1-F(X))) = \gamma LnX - \gamma Ln\beta$;

$$\gamma LnX = Ln(-Ln(1 - F(X))) + \gamma Ln\beta$$
;

$$X = \operatorname{Exp}((Ln(-Ln(1 - F(X))) + \gamma Ln\beta) / \gamma).$$

Esses procedimentos podem ser utilizados para estimar os percentis da estrutura horizontal (distribuição de frequência por classe de diâmetro) em uma amplitude de 2 cm.

O ingresso percentual das árvores em sucessivas classes de diâmetro foi calculado através da diferença de distribuições de diâmetros em duas idades consecutivas, $F(X_2)$ - $F(X_1)$, conforme desenvolvido e proposto por Garcia (1999).

De acordo com o método dos ingressos percentuais de Garcia (1999), a idade técnica de corte, ou desbaste, ocorre quando o ingresso de árvores em sucessivas classes de diâmetros não for mais significativo. Para determinar essa idade, Nogueira (2003) propôs o uso do modelo Expolinear (GOUDRIAAN, 1994) cuja relação funcional é: $IPM = \frac{\theta_1}{\theta_2} Ln \Big[1 + e^{\theta_2(I-ITD)} \Big] + \varepsilon$.

em que: IPM = ingresso percentual médio mensal de árvores, obtido dividindo-se o IP (NOGUEIRA $et\ al.$, 2001) pela idade da segunda ocasião (I_2);

IP = ingresso percentual de árvores;

I = idade do povoamento, em meses;

 θ_1 = parâmetro que indica o crescimento máximo absoluto do ingresso percentual de árvores na fase linear da curva;

 θ_2 = parâmetro que indica o crescimento máximo relativo do ingresso percentual de árvores na fase exponencial da curva;

ITD = parâmetro que corresponde à idade técnica de desbaste;

$$\varepsilon$$
 = erro aleatório, $\varepsilon \sim \text{NID}(0, \sigma^2)$.

O ajuste do modelo Expolinear (GOUDRIAAN & MONTEITH, 1990) não é trivial e requer estimativas iniciais consistentes, o que nem sempre é simples para o usuário. Assim foi

proposto e testado um procedimento alternativo de identificação da idade técnica de corte com base no IPM, sendo: 1) para cada clone em cada tipo de solo e espaçamento foi determinada a média de IPM nas idades 3 a 8 anos. As médias foram estimadas pelo fato de se ter o mesmo número de repetições em cada idade. 2) o modelo logístico foi ajustado para estimar Y = 1/IPM, em função da idade, sendo: $\frac{1}{IPM} = \frac{\theta_0}{1+\theta_1 e^{-\theta_2 \, \mathrm{I}}} + \varepsilon$, em que IPM é ingresso percentual médio (CAMPOS & LEITE, 2017) e I é a idade, em meses. 3) a idade técnica de corte (idade de início da estagnação do ingresso de árvores em novas classes de dap) foi definida por $\frac{Ln\theta_1}{\theta_2}$. Nessa idade, conforme Draper e Smith (1981), $Y = \frac{\theta_0}{2}$, ou seja, $IPM = \frac{2}{\theta_0}$.

As idades técnicas de corte definidas com base no *IPM*, pelo procedimento descrito, foram comparadas descritivamente com as idades de corte definidas pelas curvas de produção.

3.5 - Migração das Árvores nas Classes de Diâmetro e de Altura Total

Para cada árvore foi quantificado o número de vezes em que houve mudança de classe de diâmetro e altura total. A partir de diâmetros e alturas totais observados na primeira medição, feita entre 1,5 ano e 2,5 anos de idade, determinou-se o número médio de vezes em que as árvores migraram de classe a partir das observadas nas primeiras medições: 4; 6; 8; 10 cm e m. As análises foram feitas para cada tipo de solo, genótipo e espaçamento.

4 - RESULTADOS E DISCUSSÃO

4.1 - Modelagem do crescimento e produção

As equações de produção ajustadas para cada clone em cada tipo de solo e espaçamento, com as respectivas estatísticas de exatidão são apresentadas na Tabela 3. Na Tabela 4 são apresentadas as equações definidas após a aplicação dos testes de identidade de modelos. As menores estimativas do parâmetro "a" (assíntota) foram obtidas para o genótipo G2 cultivado em Latossolo. As maiores estimativas observadas para Argissolo, em parte, são devidas à maior média de precipitação pluviométrica anual (cerca de 400 mm a mais do que a média das áreas de Latossolo). O que se pode afirmar é que a qualidade de local é melhor onde se encontra o Argissolo e que independentemente do tipo de solo e precipitação, o genótipo G1 produz maior quantidade de madeira, em termos assintóticos. A aplicação do teste de identidade de modelos resultou em três agrupamentos e as equações da Tabela 4 foram utilizadas para construir as curvas de produção da Figura 1.

Na maioria das vezes a produção total com casca decresceu com o aumento do espaço útil entre plantas, o que também foi observado por Berger *et al.* (2002) e Leite *et al.* (1997). Analisando resultados e conclusões sobre experimentos de espaçamento é importante se referir à idade de referência. Análises em idades muito jovens, antes do início da competição pelos fatores de crescimento, não permitem concluir sobre efeito do espaçamento. No presente estudo consideramos as referências usuais para eucalipto, de 6 e 7 anos para o corte, além das idades de máxima produtividade média estimadas para cada tratamento.

Embora a idade técnica de corte deva ser considerada ao interpretar o efeito de diferentes espaçamentos sobre crescimento e produção, uma alternativa que simplifica de certo modo as análises é considerar a rotação regulatória para fins de comparações. No presente estudo foram consideradas rotações regulatórias de 6 e 7 anos, embora as idades técnicas de corte para cada solo e espaçamento fossem bem inferiores (Tabela 5).

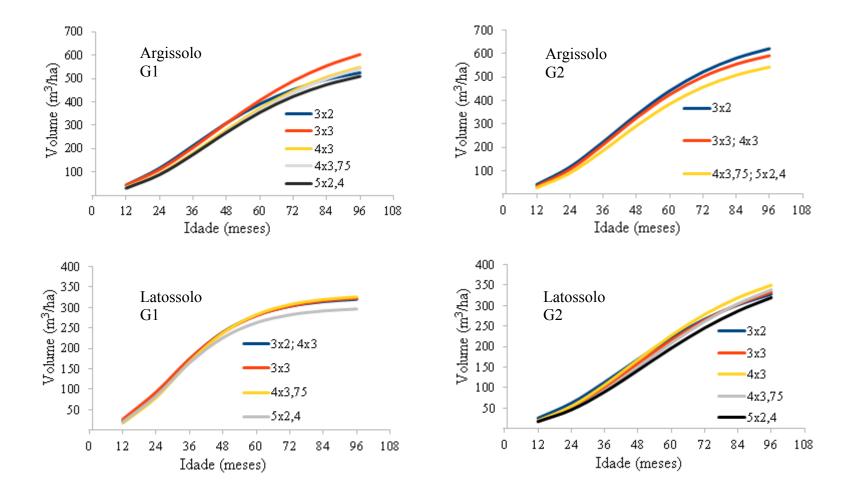
Conforme Leite (2016), algumas causas para redução da produtividade média do eucalipto em determinada região são: mudanças climáticas e déficit hídrico, genótipos mal adaptados, inadequado, extensas áreas em regime de talhadia malconduzida, altas taxas de crescimento iniciais, além de pragas e doenças. Distúrbios fisiológicos também podem contribuir para redução da produtividade média ao final da rotação do eucalipto. Os resultados da Tabela 5 e o fato de ser necessário pelo menos 6 anos para se ter madeira com densidade adequada para a indústria (GOMIDE, 2016), apontam para a escolha de maiores espaçamentos.

Quanto mais cedo os genótipos atingirem a idade de aceleração nula do crescimento, menores serão os seus *IMA*7, em relação ao *IMA* máximo. Esse fato nos leva a pensar nos testes de melhoramento genético em que as escolhas são feitas em idades iniciais com base no *IMA* e *ICA*, essa decisão tomada precocemente pode levar a opções equivocadas de seleção clonal. Se fosse factível, a idade ideal para seleção de genótipos de eucalipto seria de pelo menos 4 anos.

Analisando os resultados da Figura 2 verifica-se que em alguns casos a diferença entre produtividade média observada aos 2, 3 e 4 anos, em relação à produtividade aos 6 e aos 7 anos, é bastante expressiva. A queda de produtividade é mais evidente quando a aceleração do crescimento é nula em idades muito jovens. Isso mostra que taxas de crescimento iniciais muito aceleradas podem resultar em perda de produtividade quando o corte é feito em idade fixa, de 6 ou 7 anos. Maiores reduções geralmente ocorrem em relação à rotação regulatória de 7 anos. Essas reduções, neste estudo, ocorrem também pelo fato da maximização do incremento médio ocorrer, de modo geral, em idades perto de 4 e 5 anos, ou seja, antes de 7 anos.

Os resultados obtidos ao aplicar os testes de identidade de modelos demonstraram que uma única equação não pode ser utilizada para explicar o crescimento em diferentes espaçamentos. Isso porque as diferenças de tendências no crescimento dos tipos de solos e genótipos são bastante relevantes, tendo sido verificada igualdade dos anos de produção em três casos (G1 3x2 com 4x3 no Latossolo, G2 3x3 com 4x3 e G2 4x3,75 com 5x2,4 no Argissolo).

A informação sobre decréscimo ou acréscimo de produtividade encontrada nos gráficos da Figura 2 é importante para identificar os momentos em que os plantios clonais se diferenciam por espaçamento. Em menor espaçamento os valores são mais próximos devido às subtrações de menores volumes. No instante em que os indivíduos têm uma maior disponibilidade dos recursos vitais, a diferença se acentua consideravelmente, não sendo mais visto percentual negativo entre *IMA7* e *IMA2* nos espaçamentos 4x3 m, 5x2,4 m e 4x3,75 m.


Tabela 3 - Estimativas dos parâmetros de Gompertz ($V = a*exp(-exp(b-c*Idade))+\varepsilon$) e correspondentes estimativas: erro padrão residual (EPR) e correlação linear de produções observadas e estimadas (r) para volume comercial com casca (m^3ha^{-1})

Tipo de solo	Espaçamento	Genótipo	a	b	c	EPR	r
Argissolo	3 m×2 m	G1	577,693500	1,408941	0,039221	19,65	0,9943
Argissolo	3 m×3 m	G1	716,019314	1,420254	0,033180	29,61	0,9905
Argissolo	4 m×3 m	G1	639,206179	1,498459	0,035186	23,73	0,9952
Argissolo	5 m×2,4 m	G1	579,282325	1,523313	0,037273	31,65	0,9857
Argissolo	4 m×3,75 m	G1	637,720975	1,495349	0,034472	19,36	0,9927
Argissolo	3 m×2 m	G2	698,478249	1,490968	0,037764	53,75	0,9721
Argissolo	3 m×3 m	G2	658,611925	1,544404	0,036770	34,50	0,9866
Argissolo	4 m×3 m	G2	636,564376	1,639857	0,037691	25,01	0,9965
Argissolo	5 m×2,4 m	G2	605,800120	1,571287	0,035256	17,21	0,9912
Argissolo	4 m×3,75 m	G2	588,320756	1,676762	0,037868	25,13	0,9915
Latossolo	3 m×2 m	G1	348,573935	1,232761	0,032319	17,98	0,9810
Latossolo	3 m×3 m	G1	401,177938	1,425374	0,034142	19,35	0,9847
Latossolo	4 m×3 m	G1	385,000934	1,462638	0,033773	16,11	0,9882
Latossolo	5 m×2,4 m	G1	368,184421	1,533374	0,034701	11,29	0,9938
Latossolo	4 m×3,75 m	G1	376,057557	1,496674	0,034844	11,38	0,9940
Latossolo	3 m×2 m	G2	390,056655	1,389192	0,032712	11,92	0,9934
Latossolo	3 m×3 m	G2	402,616095	1,503062	0,032853	14,29	0,9915
Latossolo	4 m×3 m	G2	421,650091	1,510953	0,033175	17,52	0,9881
Latossolo	5 m×2,4 m	G2	408,327503	1,506235	0,030330	10,47	0,9947
Latossolo	4 m×3,75 m	G2	425,617820	1,551080	0,031510	12,16	0,9938

Tabela 4 - Estimativas dos parâmetros do modelo Gompertz ($V = a*exp(-exp(b-c*Idade))+\varepsilon$) ajustado inicialmente por tipo de solo, espaçamento e genótipo, após aplicação dos testes de identidade de modelos, para volume comercial com casca (m^3ha^{-1})

Tipo de solo	Espaçamento	Genótipo	a	b	С
Argissolo	3 m×2 m	Gl	577,693500	1,408941	0,039221
Argissolo	3 m×3 m	G1	716,019314	1,420254	0,033180
Argissolo	4 m×3 m	G1	639,206179	1,498459	0,035186
Argissolo	5 m×2,4 m	G1	579,282325	1,523313	0,037273
Argissolo	4 m×3,75 m	G1	637,720975	1,495349	0,034472
Argissolo	3 m×2 m	G2	698,478249	1,490968	0,037764
Argissolo	3 m×3 m	G2	654,318828	1,564782	0,044379
Argissolo	4 m×3 m	G2	654,318828	1,564782	0,044379
Argissolo	5 m×2,4 m	G2	603,231836	1,657123	0,042169
Argissolo	4 m×3,75 m	G2	603,231836	1,657123	0,042169
Latossolo	3 m×2 m	G1	395,496008	1,446258	0,035271
Latossolo	3 m×3 m	G1	401,177938	1,425374	0,034142
Latossolo	4 m×3 m	G1	395,496008	1,446258	0,035271
Latossolo	5 m×2,4 m	G1	368,184421	1,533374	0,034701
Latossolo	4 m×3,75 m	G1	376,057557	1,496674	0,034844
Latossolo	3 m×2 m	G2	390,056655	1,389192	0,032712
Latossolo	3 m×3 m	G2	402,616095	1,503062	0,032853
Latossolo	4 m×3 m	G2	421,650091	1,510953	0,033175
Latossolo	5 m×2,4 m	G2	408,327503	1,506235	0,030330
Latossolo	4 m×3,75 m	G2	425,617820	1,551080	0,031510

Figura 1 - Curvas de produção dos genótipos G1 e G2 nos espaçamentos e tipos de solos avaliados

TC 1 1 / T1 1	. 1 71 /		. 1 1	/ 1°	
Tabela 5 - Idades	mensals de IMA	l mayıma	nor fino de solo	, genótipo e espaçamento	
Tabela 5 Tadacs	mensuis de ma	maximo	por tipo de soro,	, genetipo e espaçamento	

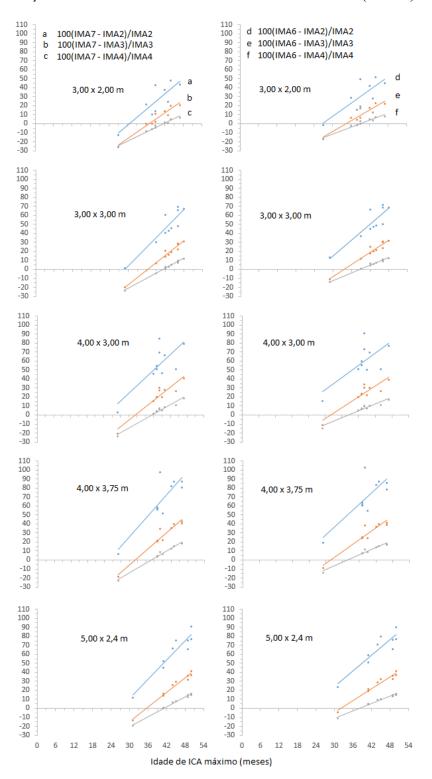
Espaçamento										
Solo	Genótipo	3x2 m	3x3 m	4x3 m	5x2,4 m	4x3,75 m				
Argissolo	G1	56	67	67	64	68				
Algissolo	G2	62	66	69	70	70				
Lataggala	G1	57	65	68	70	67				
Latossolo	G2	66	72	72	78	78				

Tabela 6 - Idades mensais de ICA máximo por tipo de solo, genótipo e espaçamento

Espaçamento										
Solo	Genótipo	3x2 m	3x3 m	4x3 m	5x2,4 m	4x3,75 m				
Argissolo	G1	36	43	43	41	43				
Aigissolo	G2	39	42	44	45	44				
Latossolo	G1	38	42	43	44	43				
Latossolo	G2	42	46	46	50	49				

Os máximos incrementos, médio e corrente, são apresentados nas Tabelas 5 e 6. Embora tenham sido observadas pequenas diferenças nas idades de máxima taxa de crescimento entre espaçamentos, para mesmos tipo de solo e genótipo, elas foram suficientes para demonstrar que quando a taxa de crescimento é muito acelerada nos meses iniciais poderá ocorrer redução na produtividade média se o corte for efetuado na idade de rotação regulatória. De modo geral, quanto mais cedo ocorre a idade de máxima taxa de crescimento, menor a idade técnica de corte e maiores as diferenças *IMA7 - IMA2*, *IMA7 - IMA3* e *IMA7 - IMA4*.

Na Figura 2 são apresentadas as diferenças percentuais entre *IMA*7 e *IMA*6 com *IMA*2, *IMA*3 e *IMA*4 (redução ou acréscimo) em relação à idade de máximo incremento corrente anual (aceleração nula do crescimento). A figura foi construída independentemente do tipo de solo e genótipo, uma vez que o objetivo foi apenas verificar as relações entre a idade de máxima taxa de crescimento e a redução ou acréscimo na produtividade média de 2, 3 e 4 para 6 e 7 anos.


Para interpretação dos resultados da Figura 2 considere o primeiro gráfico da mesma, que corresponde ao espaçamento 3x2 m. Observe pelas retas traçadas que quanto menor a idade de máxima taxa de crescimento (eixo X), maior a redução do *IMA* (eixo Y). Por exemplo, em "a" o *IMA*7 foi cerca de 10% menor do que o *IMA*2 para a menor idade de máxima taxa de crescimento. Por outro lado, quando esta idade se aproxima de 4 anos o *IMA*7 chega a ser cerca de 50% maior do que o *IMA*2. Em relação aos *IMA*3 e *IMA*4 esse acréscimo no incremento médio, para o primeiro gráfico da figura, é aproximadamente de 20% e 10% respectivamente.

À medida em que a idade de máxima taxa de crescimento aumenta as diferenças entre *IMA*7 e *IMA*8 2, 3 e 4 diminuem, passando inclusive a serem positivas, indicando *IMA*7 maior que *IMA*2. O aumento dessa referida idade ocorre à medida em que o espaçamento aumenta e isso é verificado na Figura 2, para ambas referências de idade de rotação regulatória.

As relações entre idades de máxima taxa de crescimento e *IMA* em diferentes idades certamente varia com o genótipo, tipo de solo e espaçamento. O resultado da Figura 2 desconsidera esses fatores, agrupando os resultados. Isso foi feito devido ao objetivo do estudo, de inferir sobre a relação entre a aceleração inicial do crescimento e a produtividade ao longo dos anos. O agrupamento foi feito para se ter variações na idade de máximo *ICA*.

Independentemente do tipo de solo, precipitação pluviométrica e genótipo, quanto maior for a aceleração inicial do crescimento maior a probabilidade de redução da produtividade média a partir de 2, 3 ou 4 anos, em relação às rotações regulatórias de 6 ou 7 anos. Nesses casos, quando a taxa de crescimento inicial está muito acelerada, o engenheiro florestal pode efetuar um pré-desbaste por baixo, antes da estagnação do crescimento, que pode ser estimada conforme procedimentos e métodos deste estudo (predição da idade de máximo *IMA* ou da idade de estagnação dos ingressos de árvores em novas classes de diâmetro).

Figura 2 - Diferenças percentuais (eixo Y) entre *IMA*7 (100(*IMA*7 - *IMA*i)/*IMA*i) e *IMA*6 (100(*IMA*6 - *IMA*i)/*IMA*i) para "i" igual a 2 (azul), 3 (vermelho) e 4 (cinza) anos, em função da idade de máximo incremento corrente anual (eixo X)

4.2 - Modelagem da Estrutura Horizontal

A função Weibull de dois parâmetros foi ajustada para cada parcela e idade, por tipo de solo, espaçamento e genótipo (Tabela 7). Em seguida foram ajustados os modelos *Eq1* e *Eq2* para estimar os parâmetros da função em diferentes idades. Os ajustes foram feitos por tipo de solo, genótipo e espaçamento (Tabelas 8 e 9), sendo:

$$LnBeta = \beta_0 + \beta_1 / Idade + \varepsilon \ (Eq1)$$

$$Gama = a * e^{(b/Idade + c * Idade)} + \varepsilon \ (Eq2)$$

Para projetar os parâmetros da função, a partir de distribuições observadas numa idade atual, foram empregadas as seguintes transformações:

$$\beta_2 = \beta_1 * e^{(a+b/I2)} / e^{(a+b/I1)}$$

$$\gamma_2 = \gamma_1 * (a * e^{(b/I2 + c * I2)}) / (a * e^{(b/I1 + c * I1)})$$

em que: β_1 , β_2 , γ_1 e γ_2 são as estimativas dos parâmetros β e γ nas idades atual I_1 e futura I_2 .

Tabela 7 - Estimativas dos parâmetros da função Weibull ajustada a cada tipo de solo, genótipo e espaçamento, em idades de 2 a 7 anos

		Idades (anos)	2	2	3	3	4	4	5	5	6	6	7	7
Solo	Genótipo	Espaçamento	Beta	Gama										
Argissolo	G1	3x2 m	10,707274	7,797803	11,756301	6,711600	13,381906	5,577698	14,000216	4,930424	15,048929	4,352323	15,804700	3,657855
Argissolo	G1	3x3 m	12,538192	9,630115	14,148645	8,716989	15,797689	7,466183	16,616283	6,250340	18,032957	5,510078	19,086120	5,073649
Argissolo	G1	4x3 m	13,464998	9,771616	15,480232	8,987773	17,246244	7,938984	18,225637	6,777950	19,650929	5,987329	20,800364	5,581954
Argissolo	G1	5x2,4 m	13,390156	7,048710	14,937543	6,552349	17,189982	6,110701	18,221376	5,325593	19,539852	4,838926	20,505758	4,512064
Argissolo	Gl	4x3,75 m	14,171149	9,183935	16,041023	9,117224	18,207091	7,975789	19,356914	7,318605	20,749944	6,493313	21,950972	5,851195
Argissolo	G2	3x2 m	11,306189	10,260899	12,818664	9,766101	14,455712	8,134250	15,443351	6,583326	16,505635	5,297481	17,161890	4,267338
Argissolo	G2	3x3 m	12,263241	13,313241	14,083275	15,102111	15,928022	12,098075	17,091723	9,387960	18,196712	7,601655	19,111186	6,582340
Argissolo	G2	4x3 m	13,048128	14,436349	15,040003	15,680708	17,552312	12,398857	19,056902	10,468237	20,322669	8,709527	21,284327	7,283894
Argissolo	G2	5x2,4 m	13,269540	10,672865	15,198057	11,115653	17,518661	8,742445	19,068115	7,091931	20,477775	6,393649	21,013407	5,244326
Argissolo	G2	4x3,75 m	13,352871	14,242449	15,578793	16,189184	18,403418	13,460270	20,065629	10,979518	21,432613	9,210154	22,233669	8,405918
Latossolo	Gl	3x2 m	9,734427	13,452300	11,438604	12,012607	12,499540	9,168152	13,764947	7,480360	14,836576	5,756329	15,280653	5,332298
Latossolo	Gl	3x3 m	11,214257	15,669323	13,473886	15,039760	14,871971	12,137638	16,078885	10,316717	17,321223	9,038286	17,979828	8,557353
Latossolo	G1	4x3 m	12,158728	16,596677	14,829078	16,393593	16,252575	14,443654	17,652480	13,300322	18,825242	11,362533	19,544467	11,340493
Latossolo	G1	5x2,4 m	11,392796	16,621222	14,218931	17,739774	15,725512	14,194698	17,047434	11,829887	18,317064	10,011769	18,935114	9,432019
Latossolo	G1	4x3,75 m	12,867617	20,144243	15,812403	21,002542	17,400350	17,689194	18,717223	16,272106	20,070442	14,214951	20,776796	13,791963
Latossolo	G2	3x2 m	9,368073	12,847449	11,450922	11,317882	12,567631	8,382717	13,485566	6,993656	14,546552	5,779383	14,988673	5,254060
Latossolo	G2	3x3 m	10,614199	17,502817	13,163812	16,587763	14,752804	13,103159	15,772841	11,215906	17,165335	9,271902	17,765496	8,722338
Latossolo	G2	4x3 m	11,922475	19,549938	14,819739	19,861197	16,524906	16,144962	17,774685	14,409012	19,163569	12,285353	19,746538	11,554463
Latossolo	G2	5x2,4 m	11,024615	12,205498	14,082765	13,622902	15,585574	10,953725	16,822090	9,701410	18,356561	9,006253	18,939487	7,927535
Latossolo	G2	4x3,75 m	12,286164	20,564725	15,478900	20,015845	17,624083	16,293458	18,960915	14,539869	20,676663	12,698429	21,381558	12,202705

Tabela 8 - Equações ajustadas para estimar o parâmetro Beta da função Weibull por tipo de solo, genótipo e espaçamento (modelo $LnBeta = \beta_0 + \beta_1/Idade + \varepsilon$)

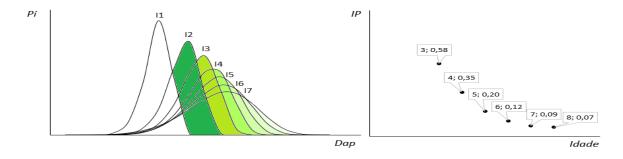
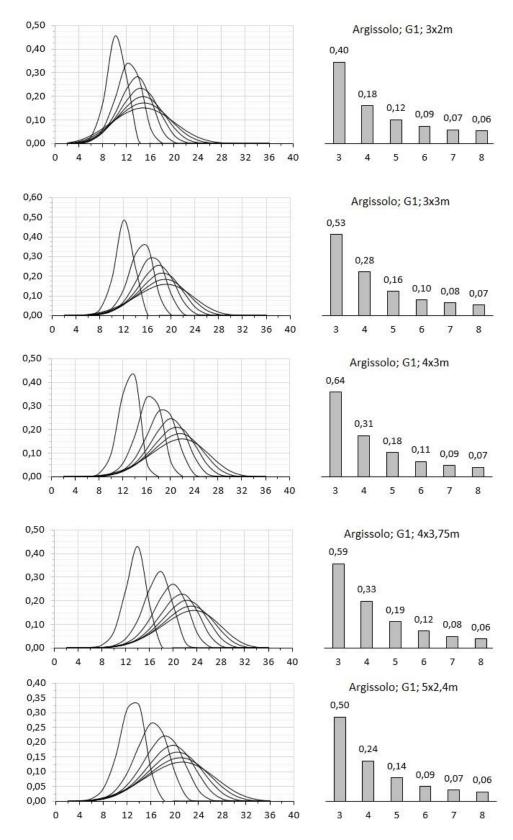
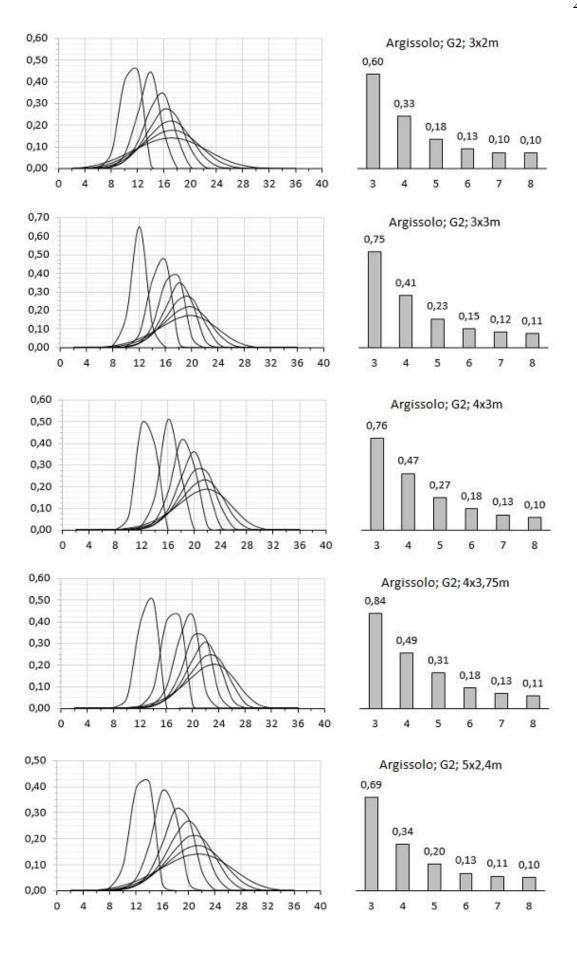

Solo	Genótipo	Espaçamento	ßО	βI	Bias	RMSE	Variância
Argissolo	G1	3x2m	2,892293	-1,133767	0,001584	0,044581	0,002049
Argissolo	G1	3x3m	3,101766	-1,265298	0,000960	0,037697	0,001466
Argissolo	G1	4x3m	3,277021	-1,433209	0,001147	0,041136	0,001745
Argissolo	G1	5x2,4m	3,220390	-1,405422	-0,000523	0,034296	0,001214
Argissolo	G1	4x3,75m	3,206585	-1,395167	0,001420	0,046338	0,002214
Argissolo	G2	3x2m	3,020897	-1,332714	0,001509	0,040073	0,001655
Argissolo	G2	3x3m	3,129402	-1,379498	0,001429	0,027865	0,000799
Argissolo	G2	4x3m	3,307083	-1,533222	0,001149	0,024781	0,000633
Argissolo	G2	5x2,4m	3,245957	-1,456209	0,000715	0,058361	0,003515
Argissolo	G2	4x3,75m	3,240943	-1,425734	0,002302	0,051176	0,002698
Latossolo	G1	3x2m	2,806578	-0,978861	0,003024	0,052100	0,002806
Latossolo	G1	3x3m	2,982724	-1,048518	0,001909	0,054336	0,003058
Latossolo	G1	4x3m	3,141039	-1,083569	0,001263	0,050372	0,002630
Latossolo	G1	5x2,4m	3,070635	-1,049303	0,002064	0,053194	0,002930
Latossolo	G1	4x3,75m	3,056725	-1,145865	0,002554	0,052080	0,002806
Latossolo	G2	3x2m	2,812856	-1,065718	0,002504	0,047496	0,002333
Latossolo	G2	3x3m	2,990238	-1,157220	0,002044	0,048064	0,002391
Latossolo	G2	4x3m	3,184764	-1,235937	0,002496	0,062067	0,003988
Latossolo	G2	5x2,4m	3,092619	-1,113586	0,002207	0,048374	0,002422
Latossolo	G2	4x3,75m	3,069838	-1,236381	0,002218	0,063948	0,004236

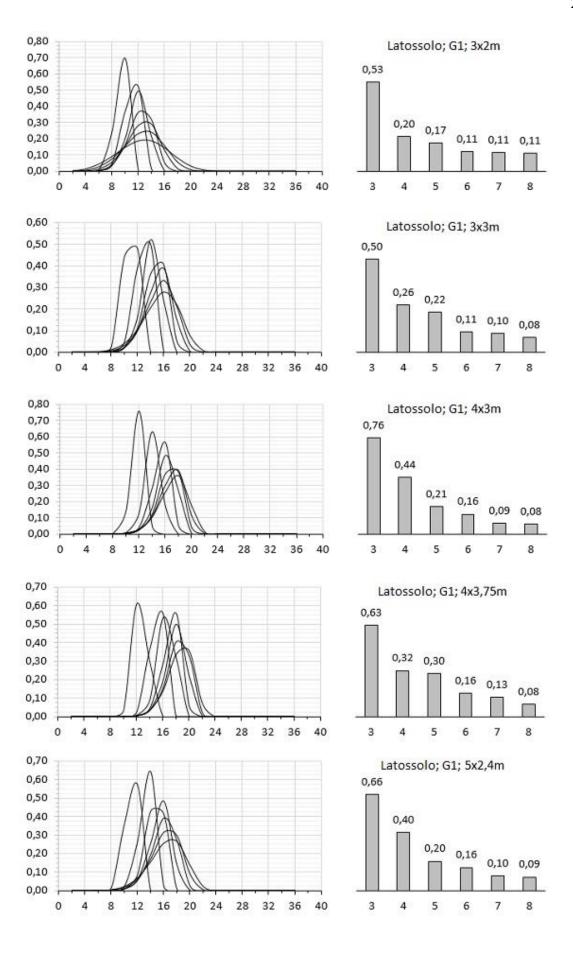
Tabela 9 - Equações ajustadas para estimar o parâmetro Gama da função Weibull por tipo de solo, genótipo e espaçamento (modelo $Gama=a*exp(b/Idade+c*Idade)+\varepsilon$)

Solo	Genótipo	Espaçamento	а	b	С	Bias	RMSE	Variância
Argissolo	G1	3x2m	13.500811	-0.163470	-0.135599	-0.00336	1.239970	1.587110
Argissolo	G1	3x3m	12.421760	-0.174715	-0.097553	0.020739	1.015655	1.064386
Argissolo	G1	4x3m	14.405212	-0.317253	-0.127724	-0.00748	1.344042	1.864663
Argissolo	G1	5x2,4m	9.202921	-0.156462	-0.097170	-0.00739	0.765918	0.605497
Argissolo	G1	4x3,75m	12.421760	-0.174715	-0.097553	0.020739	1.015655	1.064386
Argissolo	G2	3x2m	26.291678	-0.959723	-0.232790	0.013754	1.510965	2.356466
Argissolo	G2	3x3m	47.310181	-1.444870	-0.251659	0.032074	1.242061	1.591419
Argissolo	G2	4x3m	44.317191	-1.307259	-0.227917	0.004618	2.078897	4.461206
Argissolo	G2	5x2,4m	28.319363	-1.119492	-0.213303	-0.007511	1.855484	3.553822
Argissolo	G2	4x3,75m	47.624173	-1.539342	-0.216995	0.065736	2.613963	7.048757
Latossolo	G1	3x2m	31.087907	-0.656612	-0.251534	0.030651	1.846715	3.535690
Latossolo	G1	3x3m	29.023758	-0.528190	-0.173736	0.041809	2.026827	4.258363
Latossolo	G1	4x3m	27.848575	-0.540842	-0.124097	-0.091038	2.097323	4.553087
Latossolo	G1	5x2,4m	38.964153	-0.844956	-0.193434	0.005221	3.468237	12.474149
Latossolo	G1	4x3,75m	37.784698	-0.689436	-0.136267	-0.029225	4.285010	19.040477
Latossolo	G2	3x2m	22.983608	-0.266074	-0.217475	0.013432	1.052669	1.148966
Latossolo	G2	3x3m	43.075165	-0.950314	-0.221840	-0.070107	2.733821	7.745487
Latossolo	G2	4x3m	40.405488	-0.746653	-0.170538	0.088815	4.878535	24.673407
Latossolo	G2	5x2,4m	32.268670	-1.197751	-0.180278	-0.077196	2.665616	7.362496
Latossolo	G2	4x3,75m	43.128283	-0.830439	-0.174672	0.088049	2.028187	4.257855

As equações das Tabelas 8 e 9 foram utilizadas para projetar as distribuições de diâmetro para as idades de 3 a 8 anos, a partir da distribuição observada na primeira medição. Os ingressos de árvores foram calculados conforme ilustração da Figura 3. Com as distribuições geradas foram estimados os ingressos percentuais, conforme Garcia (1999). Esses ingressos foram obtidos para cada local, clone e espaçamento (Figura 4).


Figura 3 - Distribuição de diâmetros de um povoamento equiâneo e ingressos sucessivos de árvores em novas classes de diâmetro




Os efeitos do tipo de solo e da média pluviométrica estão evidenciados na Figura 4. Enquanto no Latossolo o diâmetro máximo não ultrapassa 24 cm, no Argissolo ele chega a 36 cm nos maiores espaçamentos. Com base nessa figura verifica-se que, no local de maior capacidade produtiva (Argissolo com 1458 mm de pluviosidade média anual – PMA), as distribuições de diâmetro vão se achatando e deslocando-se para a direita, mantendo a origem da distribuição (diâmetro mínimo) praticamente constante. Esse padrão de achatamento das curvas é típico de povoamentos equiâneos em locais onde não há restrição expressiva de capacidade produtiva.

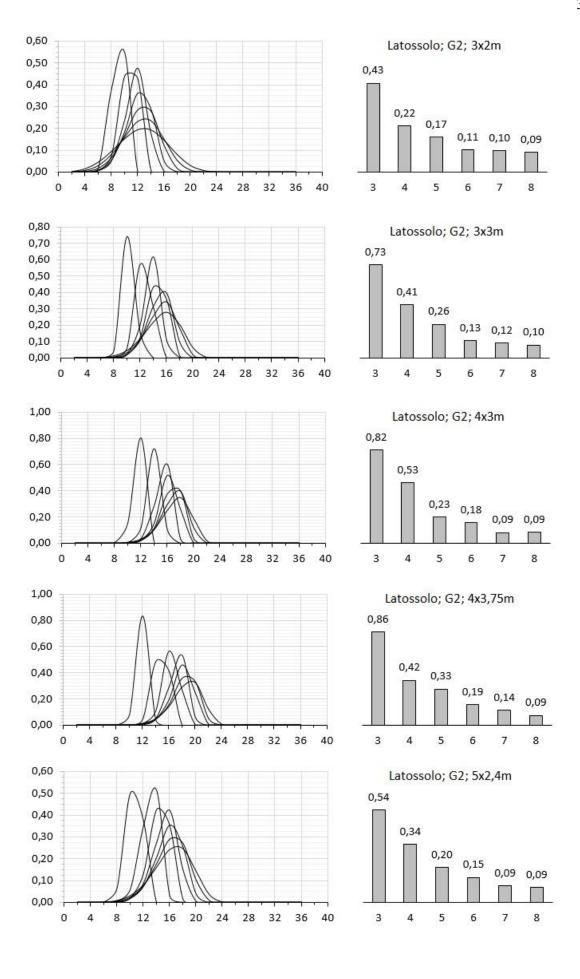

No Latossolo, com 1058 mm de PMA, o deslocamento das curvas é menor, de modo que elas tendem mais à normalidade ao longo dos anos (menores valores de beta e maiores de gama, em relação às estimativas obtidas para Argissolo). No Argissolo as distribuições se aproximam mais rapidamente para um padrão de distribuição tipo X² (Qui-quadrado).

Figura 4 - Distribuições de diâmetro projetadas a partir da distribuição observada a 1,5 ano de idade no Argissolo e no Latossolo, dos genótipos G1 e G2, nos espaçamentos 3x2, 3x3, 4x3, 4x3,75 e 5x2,4 mais seus correspondentes ingressos de árvores em novas classes de diâmetro

Analisando o resultado da Figura 4, verifica-se que de modo geral, há uma tendência de estagnação do ingresso de árvores em novas classes de diâmetro a partir de cerca de 6 anos. Para identificar estatisticamente a idade na qual o ingresso de árvores tende à estabilização, a idade técnica de corte, ou seja, idade de início da estagnação do ingresso de árvores em novas classes de dap, é igual a $\frac{Ln\theta_1}{\theta_2}$, sendo θ_1 e θ_2 parâmetros do modelo $\frac{1}{IPM} = \frac{\theta_0}{1+\theta_1e^{-\theta_2}} + \varepsilon$,

IPM = ingresso percentual médio (CAMPOS & LEITE, 2017) e *I* a idade, em meses. Esse modelo foi ajustado para cada genótipo, em cada tipo de solo e espaçamento (Tabela 7). As equações ajustadas resultaram nas estimativas de idades técnicas de corte indicadas nas Figuras 5 e 6. Na última pode ser observada a qualidade de ajuste do modelo proposto para identificação da idade de estagnação dos ingressos de árvores em novas classes de diâmetro (ITC).

De modo geral a ITC foi menor para os menores espaçamentos, independentemente de genótipo e tipo de solo, com exceção de dois casos em que foi observada inconsistência no resultado, com estimativas de ITC muito além daquelas factíveis. Isso ocorreu para o espaçamento 4x3,75 m em Latossolo, onde as idades estimadas para corte (ITC) foram 160 e 121 meses. Isso pode acontecer no caso de presença de observações influentes quanto ao ajuste do modelo de distribuição de diâmetros, uma vez que no presente estudo nenhuma observação foi descartada para os ajustamentos, uma vez que a proposta foi de ajustar o modelo às médias de *IPM*.

Figura 5 - Idades técnicas de corte com base na maximização do incremento médio anual (*IMA*) em m³ha⁻¹ano⁻¹ e na estagnação dos ingressos percentuais médios (*IPM*)

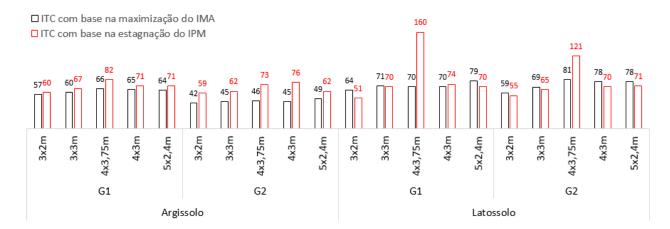
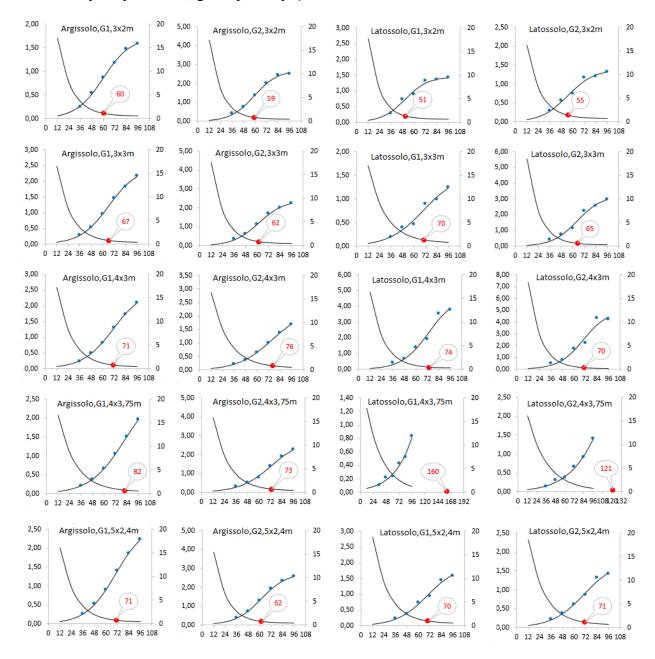



Figura 6 - Ingressos percentuais médios estimados: *IPM* (eixo "y" principal), 1/*IPM* (eixo "y" secundário) e a idade em meses (eixo "x") da estagnação de ingressos (em vermelho), por tipo de solo, genótipo e espaçamento

Com exceção dos dois casos mencionados, foi observada coerência entre as idades técnicas de corte (ITCs) determinadas com base na estagnação do ingresso de árvores em novas e sucessivas classes de diâmetro, e aquelas determinadas pela maximização do incremento médio anual (m³ha-¹ano-¹) (Tabela 5 e Figura 5). As menores ITCs foram obtidas para Argissolo e isso se deve à maior taxa de crescimento inicial no local de maior capacidade produtiva.

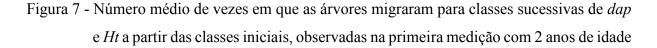
Quando se faz uma análise para avaliar o efeito do espaçamento ou de qualquer outro fator (ou tratamento) na produtividade é importante modelar o crescimento (CAMPOS & LEITE, 2017). Através da modelagem obtém-se a idade técnica de corte para cada tratamento (Tabela 5 e Figura 6). É possível também determinar a rotação econômica (documento de rotação econômica) para cada espaçamento, fator ou tratamento. Entretanto, na maioria dos estudos, as análises estatísticas (anova e testes de médias ou modelagem por regressão) são feitas com uma idade fixa, geralmente de 7 anos para eucalipto. Essa idade é assumida como se fosse uma rotação regulatória universal para eucalipto, que não existe, uma vez que além dos fatores já mencionados, a idade técnica de corte depende também do objetivo, podendo inclusive ser superior (rotação econômica) àquela de máximo *IMA* quando o uso requer maior densidade da madeira.

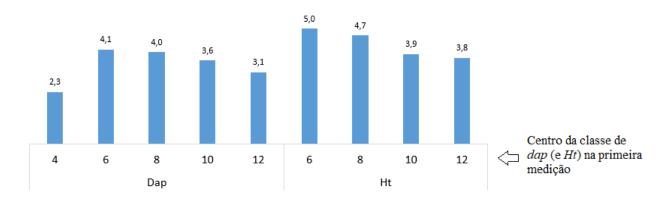
A interpretação de resultados experimentais, ou mesmo para povoamentos em escala comercial, considerando uma idade única de referência pode levar a inconsistências ou decisões equivocadas, principalmente quando se trata de inferências em relação ao desempenho de clones. Campos e Leite (2017) ilustram e discutem esse fato. Por exemplo, ao comparar a produtividade média de dois genótipos, aos 7 anos de idade, em dois espaçamentos distintos pode-se dizer que estatisticamente um deles é mais indicado para esse genótipo. Ocorre que, se são dois espaçamentos distintos, de imediato as tendências de crescimento podem diferir e consequentemente as relações entre produção e taxas de crescimento com a idade também.

Uma alternativa eficiente para definir o melhor espaçamento é por meio de análise econômica, por exemplo, com base nos critérios do Valor Anual Equivalente (VAE), Valor Esperado da Terra (VET), Valor Presente Líquido para Horizonte Infinito (VPLinf) ou Custo de Oportunidade (*Total Cost Ownership*) (BERGER *et al.*, 2011, VIRGENS *et al.*, 2016, PEDROSO FILHO *et al.*, 2018). Porém, a análise deve ser feita considerando o corte na rotação técnica de cada espaçamento, e não em uma idade fixa para todos os espaçamentos. Além disso é necessário considerar o uso da madeira, por exemplo, se a madeira for para produção de carvão vegetal o ganho de densidade da madeira com a idade deve ser incluído nas análises.

4.3 - Migração das Árvores nas Classes de Diâmetro e Altura Total

Para cada árvore foi quantificada a quantidade de vezes que houve mudança de classe de diâmetro, a partir dos diâmetros observados na primeira medição, feita em idades de 1,5 a 2,5 anos. Na Figura 7 são apresentados os números médios de vezes que as árvores migraram

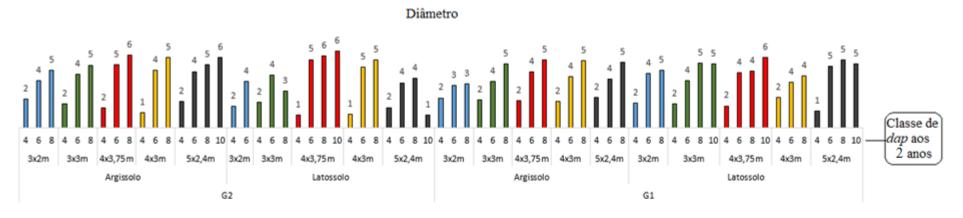

de classes de diâmetro, tendo sido observadas na primeira medição (4, 6, 8 e 10 cm). Esse mesmo tipo de análise foi feito para a variável altura total a partir das classes de 4, 6, 8 e 10 m.

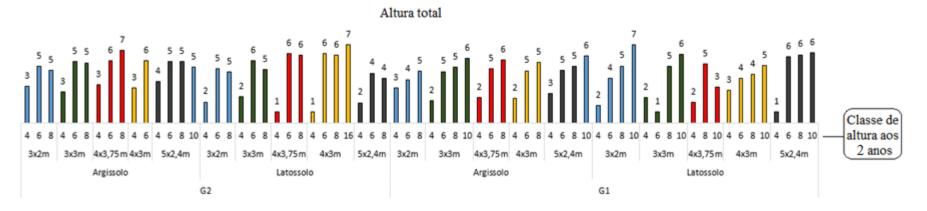

As árvores, que se encontram na classe de 4 cm (*dap*) inicialmente, migram em média duas vezes, ou seja, chegam em média à classe de 8 cm de *dap*, sendo na maioria das vezes árvores dominadas por ocasião do corte raso. Essas árvores podem não gerar madeira para o uso comercial pretendido.

Por exemplo, conforme Gomide (2016), árvores de eucalipto com *dap* inferior a 10 cm não geram toras de 6 m para produção de celulose. O investimento nelas é alto, o custo de colheita maior ainda e não produzem madeira para celulose, dependendo da rotação regulatória e das especificações, tanto de diâmetro quanto de comprimento, de toras (MONTE, 2012). Uma possibilidade seria o reespaçamento (LISITA *et al.*, 1997), eliminando essas árvores da classe de 4 cm na primeira medição. As árvores da classe de *dap* entre 6 e 10 cm na primeira medição migraram em média quatro vezes, chegando à classe de 14 cm. Aquelas que se encontravam na classe de 12 cm migraram em média três vezes, chegando à classe de 18 cm.

O número médio de vezes em que as árvores migraram de classe de *dap* e de *Ht*, na Figura 8, refere-se às médias gerais, sem considerar tipo de solo, genótipo e espaçamento. É esperado que a migração seja maior nos espaçamentos maiores. Isso é percebido em alguns casos, ou seja, para algumas combinações de genótipos e tipos de solo. Independentemente, árvores que se encontram na classe de 4 cm na primeira medição em média não migram mais que duas classes, ou seja, não passam de 8 cm até o final da rotação de 7 anos. Para classes de 6 cm em diante quanto maior o espaçamento maior o número de vezes em que as árvores migram para as classes sucessivas, considerando uma amplitude de 2 cm em cada classe. Desses resultados e considerando as conclusões de Monte (2012) e Gomide (2016), depreende-se que independentemente do genótipo, tipo de solo e espaçamento, as árvores que se encontram na classe de *dap* de 4 cm na primeira medição, em cerca de 2 anos, não resultarão em toras para uso comercial caso a premissa seja aquela definida pelos referidos autores (6 m de comprimento com pelo menos 7 cm de diâmetro na ponta mais fina).

Fica, portanto, a sugestão de pesquisas visando identificar as causas pelas quais essas árvores "suprimidas" ocorrem, bem como para definir práticas de manejo que permitam minimizar a ocorrência de árvores com pequenos diâmetros (≤ 5 cm) em idade de cerca de 2 anos. Uma opção é o reespaçamento, conforme Lisita *et al.* (1997), porém tudo isso deve ser analisado sob o ponto de vista econômico.





Analisando o resultado da Figura 8 verifica-se que a migração das árvores nas classes sucessivas de altura ocorre de modo diferente quando comparada à migração nas classes de diâmetro, sendo que no máximo houve uma migração de cinco classes, com amplitude de 2 m. verifica-se também que a migração das árvores reduz nas duas extremidades da distribuição de diâmetros observada na primeira medição, sendo este um padrão esperado.

Pode-se dizer que o efeito do sítio, representado pelo tipo de solo, assim como do espaçamento e do genótipo sobre a migração em classes de altura e dap é leve, mas existe e se deve certamente pelo fato de melhores condições para os indivíduos crescerem, tal qual a área útil ou também a adaptação do material genético ao substrato e aos fatores climáticos do local.

Figura 8 - Número médio de vezes que as árvores mudaram de classe de diâmetro e de altura, por genótipo, tipo de solo e espaçamento, a partir de cada classe de diâmetro observada na primeira medição

5 - CONCLUSÕES

Os resultados obtidos neste estudo de tipo de solo, genótipo e espaçamento em monocultura de eucalipto permitem concluir que:

- Quanto mais acelerado o crescimento inicial, maior a diferença entre a produtividade média de 2, 3 e 4 anos e a produtividade média nas rotações regulatórias de 6 ou 7 anos.
- A alternativa proposta neste estudo para identificar a idade de estagnação dos ingressos de árvores em novas classes de diâmetro é eficiente e pode ser utilizada como alternativa ao modelo expolinear.
- Para as condições do estudo, a idade técnica de corte aumenta com o espaçamento, independentemente do tipo de solo e do genótipo.
- Considerando os dois tipos de solo, os dois genótipos e os cinco espaçamentos, a idade técnica de corte encontra-se entre 5 e 6 anos.
- A migração reduzida das árvores nas classes de diâmetro, em sítios de menor capacidade produtiva, pode resultar em inconsistência na idade técnica de corte, definida com base na estagnação dos ingressos de árvores em sucessivas classes de diâmetro.
- Árvores da classe de diâmetro de 4 cm em idade menor ou igual a 2,5 anos, em média, migram até a classe de 8 cm, nas condições do estudo, durante uma rotação de 7 anos.
- De modo geral as árvores não migram mais do que cinco vezes nas classes de diâmetro
 e seis vezes nas classes de altura total, considerando amplitudes de 2 cm e 2 m,
 respectivamente, diâmetros e alturas totais observadas em cerca de 2 anos de idade e
 rotação de 7 anos.
- A quantidade de vezes que as árvores migram nas classes de diâmetro, e altura total, depende mais do porte inicial do que da qualidade do local.
- Não há um padrão consistente de migração das árvores nas classes de diâmetro e de altura em relação ao espaçamento, sugerindo efeitos interativos de genótipo e qualidade de local na migração das árvores.

6 - REFERÊNCIAS BIBLIOGRÁFICAS

BERGER, R.; SCHNEIDER, P. R.; FINGER, C. A. G.; HASELEIN, C. R. Efeito do espaçamento e da adubação no crescimento de um clone de *Eucalyptus saligna* Smith. **Ciência Florestal**, Santa Maria, v. 12, n. 2, p. 75-87, 2002.

BERGER, R.; SANTOS, A. J. dos; TIMOFEICZYK Jr., R; BITTENCOURT, A. M.; SOUZA, V. S. de; EISFELD, C. L. O efeito do custo da terra na rentabilidade florestal: um estudo de caso para Santa Catarina. **Floresta**, Curitiba, v. 41, n. 3, p. 599-610, jul. /set. 2011.

BINKLEY, D.; FISHER, R. F. **Ecology and management of forest soils**. 4. ed. New Jersey: Wiley-Blackwell, 2013. 347p.

CAMPOS, J. C. C.; LEITE, H. G. **Mensuração florestal**: perguntas e respostas. 5. ed. Viçosa: UFV, 2017. 636p.

CAMPOS, B. P. F.; BINOTI, D. H. B.; SILVA, M. L.; LEITE, H. G.; BINOTI, M. L. M. S. Efeito do modelo de afilamento utilizado sobre a conversão de fustes de árvores em multiprodutos. **Scientia Forestalis**, Piracicaba, v. 42, n. 104, p. 513-520, 2014.

DRAPER, N. R.; SMITH, H. **Applied regression analysis**. 2. ed. New York: John Wiley & Sons, 1981. 709p.

FORRESTER, D. I.; THEIVEYANATHANS, C. J. J.; MARCAR, N. E. Enhanced water use efficiency in a mixed *Eucalyptus globulus* and *Acacia mearnsii* plantation. **Forest Ecology Management**, Amsterdam, v. 259, n. 9, p. 1761-1770. 2010.

GARCIA, S. L. R. **Ingresso percentual**: teoria e aplicações em Ciência Florestal. Viçosa, MG: [1999]. 20 p. Trabalho não publicado.

GOMIDE, C. R. **Determinação do número de toras comerciais destinadas à produção de celulose aplicando um modelo de distribuição diamétrica e equação de Taper**. 2016. 67f. Dissertação (Mestrado em Ciência Florestal, área de concentração Manejo Ambiental) Universidade Federal de Viçosa, Minas Gerais.

GOUDRIAAN, J.; MONTEITH, J. L. A mathematical function for crop growth based on light interception and leaf area expansion. **Annals of Botany**, Oxford, v. 66, p. 695-701, 1990.

GOUDRIAAN, J. Using the expolinear growth equation to analyse resource capture. *In*: Monteith JL, Scott RK, Unsworth MH. (Eds.) **Resource capture by crops**. Nottingham: Nottingham University Press, 1994. p. 99–110.

GOUVEIA JR, W. V.; MATIAS, R. A. M.; SOARES, T. S. Desenvolvimento inicial de eucalipto clonal em diferentes espaçamentos. **Revista Agrotecnologia**. Ipameri, v. 7, n. 2, p. 40-46, 2016.

HYAMS, D. G. **Curve Expert**: Software analítico. Versão 2.6.5. [*S. l.*], 16 jul. 2018. Disponível em: http://www.curveexpert.net. Acesso em: 3 set. 2019.

- KRUSCHEWSKY, G. C.; MACEDO, R. L. G.; VENTURIN, N.; OLIVEIRA, T. K. de. Arranjo estrutural e dinâmica de crescimento de *Eucalyptus* spp. em sistema agrossilvipastoril no Cerrado. **Cerne**, Lavras, v. 13, n. 4, p. 360-367, out./dez. 2007.
- LEITE, H. G. O inventário florestal e a sustentabilidade. **Revista Opiniões**, Ribeirão Preto, ano 13, n. 43, p. 18-20, mar./mai. 2016.
- LEITE, F. P.; BARROS, N. D.; NOVAIS, R. D.; SANS, L. M. A.; FABRES, A. S. Crescimento de *Eucalyptus grandis* em diferentes densidades populacionais. **Revista Árvore**, Viçosa, v. 21, n. 3, p. 313-321, 1997.
- LEITE, H. G.; NOGUEIRA, G. S.; MOREIRA, A. M. Efeito do espaçamento e da idade sobre variáveis de povoamentos de *Pinus taeda* L. **Revista Árvore**, Viçosa, v. 30, n. 4, p. 603-612, 2006.
- LISITA, A.; LEITE, H.G.; CAMPOS, J.C.C.; REGAZZI, A.J.; LELLIS, V.G.S. Efeitos de reespaçamento na produção, no diâmetro médio e na estrutura de povoamentos de *Eucalyptus camaldulensis*. **Revista Árvore**, Viçosa, v. 21, n. 4, p. 473-482, 1997.
- MARCOLINO L. Crescimento de clones de eucalipto em quatro espaçamentos de plantio no interior de São Paulo. 2010. 36p. Monografia (Graduação em Engenharia Florestal) Universidade Federal Rural do Rio de Janeiro.
- MONTE, M. A. Inclusão de critérios sociais na modelagem matemática do planejamento florestal. 2012. 74p. Tese (Doutorado em Ciência Florestal) Universidade Federal de Viçosa, Minas Gerais.
- MORAIS, V. M. Dinâmica de crescimento de eucalipto clonal sob diferentes espaçamentos, na região Noroeste do Estado de Minas Gerais. 2006. 78f. Dissertação (Mestrado em Engenharia Florestal, área de concentração Manejo Ambiental) Universidade Federal de Lavras, Minas Gerais.
- MÜLLER, M. D.; COUTO L.; LEITE, H. G.; BRITO, J. O. Avaliação de um clone de eucalipto estabelecido em diferentes densidades de plantio para produção de biomassa e energia. **Biomassa & Energia**, Itu, v. 2, n. 3, p. 177-186, 2005.
- NOGUEIRA, G.S.; LEITE, H.G.: CAMPOS; J.C.C., SOUZA, A.L. de; COUTO, L. Determinação da idade técnica de desbaste em plantações de eucalipto utilizando o método dos ingressos percentuais. **Scientia Forestalis**, Piracicaba, n. 59, p. 51–59, jun. 2001.
- NOGUEIRA, G. S. **Modelagem do crescimento e da produção de povoamentos de** *Eucalyptus* spp. e de *Tectona grandis* submetidos a desbaste. Viçosa, MG: UFV, 2003. 126p. Tese (Doutorado em Ciência Florestal) Universidade Federal de Viçosa, Minas Gerais.
- PEDROSO FILHO, J.; BIALI, L.; SCHNEIDER, P.; FARIAS, J. Avaliação econômica de projetos de florestamento com *Eucalyptus grandis* Hill ex Maiden implantado sob diferentes espaçamentos. **Ciência Florestal**, Santa Maria, v. 28, n. 1, p. 240-248, abr. 2018.

- REGAZZI, A. J.; SILVA, C. H. O. Testes para verificar a igualdade de parâmetros e a identidade de modelos de regressão não-linear em dados de experimento com delineamento em blocos casualizados. **Ceres**, Viçosa, v. 57, n. 3, p. 315-320, 2010.
- REINER, D. A.; SILVEIRA, E. R.; SZABO, M. S. O uso do eucalipto em diferentes espaçamentos como alternativa de renda e suprimento da pequena propriedade na região sudoeste do Paraná. **Synergismus scyentifica**, Pato Branco, v. 6, n. 1, p. 1-7, 2011.
- SANTOS, J. A. dos; LIMA, V. O. B.; OLIVEIRA, J. C. de; MATOS, P. S.; TRAZZI, P. A: Avaliação do crescimento de clones de eucalipto no Norte de Minas Gerais. **Enciclopédia Biosfera**, Goiânia, v. 14, n. 26, p. 80, 2017.
- SCHEEREN, L. W.; SCHNEIDER, P. R.; FINGER, C. A. G. Crescimento e produção de povoamentos monoclonais de *Eucalyptus saligna* Smith manejados com desbaste, na região Sudeste do estado do Rio Grande do Sul. **Ciência Florestal**, Santa Maria, v. 14, n .2, p. 111-122, 2004.
- SCHUMACHER, F. X.; HALL, F. S. Logarithmic expression of timber-tree volume. **Journal of Agricultural Research**, Washington, v. 47, n. 9, p. 719-734, 1933.
- SEREGHETTI, G. C.; LANÇAS, K. P.; SARTORI, M. S.; REZENDE, M. A.; SOLER, R. R. Efeito do espaçamento no crescimento e na densidade básica da madeira de *Eucalyptus urophylla* x *Eucalyptus grandis* em florestas de ciclo curto. **Energia na Agricultura**, Botucatu, v. 30, n. 3, p. 257-262, 2015.
- SETTE JR, C. R.; FILHO, M. T.; DIAS, C. T. S.; LACLAU, J. P. Crescimento em diâmetro do tronco das árvores de *Eucalyptus grandis* W. Hill ex Maiden e relação com as variáveis climáticas e fertilização mineral. **Revista Árvore**, Viçosa-MG, v. 34, n. 6, p. 979-990, 2010.
- SILVA, M. L. da; RIBEIRO, C. A. A. S. Estabelecimento de rotação econômica para uma floresta regulada. **Revista Árvore**, Viçosa, v. 30, n. 1, p. 65-73, 2006.
- SILVEIRA, E. R.; REINER, D. A.; SMANIOTTO, J. R. Efeito do espaçamento de plantio na produção de madeira e serapilheira de *Eucalyptus dunnii* na região Sudoeste do Paraná. **Revista Técnico-Científica do CREA-PR**, Pato Branco, 2. ed. p. 1-9, set. 2014.
- SKOVSGAARD J. P.; VANCLAY J. K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. **Forestry**, Oxford, v. 81, p. 31, 2008.
- SOARES, A. A. V.; LEITE, H. G.; SOUZA, A. L.; SILVA, S. R.; LOURENÇO, H. M.; FORRESTER, D. I. Increasing stand structural heterogeneity reduces productivity in Brazilian *Eucalyptus* monoclonal stands. **Forest Ecology and Management**, Amsterdam, v. 373, p. 26-32, 2016
- VIRGENS, A. P. das; FREITAS, L. C. de; LEITE, A. M. P. Análise econômica e de sensibilidade em um povoamento implantado no sudoeste da Bahia. **Floresta e Ambiente**, Seropédica, v. 23, n. 2, abr. /jun. 2016.
- ZENNER, E. K.; HIBBS, D. E. A New method for modelling the heterogeneity of forest structure. **Forest Ecology and Management**, Amsterdam, n. 129, p. 75-87, 2000.