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RESUMO 

SOUZA, Guilherme Silverio Aquino de, D.Sc., Universidade Federal de Viçosa, 

setembro de 2019. Aprendizado de máquina em aplicações de manejo florestal. 

Orientador: José Marinaldo Gleriani.  

Os algoritmos de aprendizagem de máquina (machine learning), constituem algumas das 

técnicas de inteligência artificial capazes resolver problemas mais complexos e de 

relações não lineares entre variáveis. Esses algoritmos vêm ganhando espaço em 

aplicações florestais mostrando-se eficientes em diversas aplicações florestais, 

retornando ganhos de precisão e redução de custos de processos em empresas. Além das 

ANN, que acumulam já uma considerável quantidade de estudos em aplicações florestais, 

alguns outros algoritmos mostraram potencial para a melhoria da precisão e acurácia de 

trabalhos de modelagem, tais como regressão de vetor de suporte (SVR) e o random forest 

(RF). O objetivo do presente trabalho foi de comparar o desempenho dos algoritmos 

citados em algumas aplicações florestais, buscando entender o comportamento das 

predições bem como os melhores modelos para os casos estudados. O primeiro caso, 

primeiro capítulo, teve o objetivo de avaliar o desempenho de índices de vegetação óticos 

e radarmétricos, provindos dos sensores ALOS-AVNIR-2 e ALOS-PALSAR, 

respectivamente, para predição do volume de plantios de eucalipto usando os três 

algoritmos supracitados. Cinco principais índices contribuíram, em diferentes níveis para 

as predições de volume: NDVI e R (índices opticos), e Pt, VSI, BMI (índices 

radarmétricos), provando a complementariedade da informação de ambos sensores. RF 

foi o algoritmo mais apropriado, com um R² de 0.778 e RMSE de 11.561(4.578%). No 

segundo capítulo, investigou-se o uso dos algoritmos para a predição de diâmetros e 

alocação ótima de fustes árvores de eucalipto em toras para diferentes usos, comparando-

os com equações de afilamento. A equação de Kozak (1988) e as ANN apresentaram as 

estimativas mais acuradas e desempenho similar. RF gerou estimativas inexatas, gerando 

curvas de perfil de árvores na forma de “degraus”. Em ambos estudos, os três algoritmos 

testados (ANN, SVR e RF) mostraram desempenho ou igual ou superior as abordagens 

convencionais. O RF se mostrou um algoritmo muito flexível para os casos de regressão, 

especialmente para a predição de volume por sensoriamento remoto. Entretanto os 

modelos gerados são limitados em predizer em uma amplitude e intervalo dado das 

mensurações das amostras. Para estimar o diâmetro no fuste, a não ser que mensurações 

sejam tomadas em intervalos menores e grandes amplitude de classes de tamanho de 

árvores amostras, o algoritmo RF se mostrou inapropriado. Os algoritmos SVR e ANN 



preservaram a continuidade das funções, mostrando-se apropriadas para estimativas fora 

do intervalo de mensuração, especialmente para o caso das funções de afilamento. Entre 

esses dois algoritmos, a ANN se mostrou muito mais flexível para lidar com a modelagem 

quantitativa (regressão), especialmente quando são envolvidas variáveis categóricas com 

muitos fatores (estratos e classes). 

 

Palavras-chave: Máquina de vetor de suporte. Redes Neurais (Computação). Algoritmos. 

 

  



ABSTRACT 

SOUZA, Guilherme Silverio Aquino de, D.Sc., Universidade Federal de Viçosa, 

September, 2019. Machine Learning in Forest Management Applications. Adviser: 

José Marinaldo Gleriani. 

Machine learning algorithms constitute one of the techniques of artificial intelligence that 

can solve problems with complex data and non-linear relation between variables. This 

algorithm has been conquering space on forest modelling being efficient for management 

of planted and natural areas, gaining precision and reducing costs. Artificial neural 

networks already accumulate a great amount of studies on forestry. Some other 

algorithms has been shown potential for precision and accuracy of estimate, such as 

support vector regression (SVR) and random forest (RF). The main objective of this thesis 

was to compare ANN, SVR and RF in some forest case studies, attempting to understand 

behavior of predictions and best models. The first case, first chapter, aimed to assess the 

performance of optical and L-Band SAR vegetation indices from ALOS-AVNIR-2 and 

ALOSPALSAR, respectively, for eucalyptus stand volume retrieval in eastern Brazil, 

using three different machine-learning algorithms. Five main indices contributed, in 

different levels, to volume predictions of eucalyptus stands using the different machine 

learning algorithms: NDVI and R (optical indices), and Pt, VSI, BMI (SAR indices), 

proving the complementarity of both sensors information. Random Forest algorithm were 

the most appropriate machine-learning algorithm for data analysis yielding an R² value 

of 0,778 and RMSE of 11,561 (4,578%), outperforming ANN and SVM. In the second 

chapter, objective was to evaluate if machine-learning algorithms can bring improvement 

on diameter estimations and consequent log allocation on initial age of eucalyptus trees 

in Brazil. We analyzed eight taper models for ages: 40, 55 and 72 months. Variable 

exponent equation of Kozak (1988) and Artifitial Neural networks outperformed the 

comparison, showing estimated diameters statistically equal to real values. Both models 

produced comparable predictions. Random Forest generated misleading diameter 

estimations affecting optimization algorithm for log allocation. Tree profile derived from 

RF model presented “step way” behavior. In both studies, the three machine learning 

algorithms showed comparable or superior accuracy than conventional approaches. RF 

showed great flexibility for regression cases. However, RF models are restricted to a 

given range and interval of measurements. For diameter estimation, unless measures were 

taken in small intervals and with a wide range of size classes, RF is not appropriate. SVR 

and ANN preserved continuity of the predictive function, with ANN showing more 



plasticity, specially when categorical variables are used with a great amount of factors 

(strata and classes). 

Keywords: Support vector machine. Artificial neural networks. Algorithms. 
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INTRODUÇÃO 

 

A ciência florestal, assim como qualquer outra área que estuda o meio natural, aborda 

fenômenos complexos e relações muitas vezes não lineares entre variáveis. A abordagem 

tradicional da modelagem baseada em probabilidade, estatística clássica, é consagrada na 

literatura e em suas aplicações, por usa eficácia. Entretanto, estudos vêm mostrando precisão 

inferior com relação as novas técnicas de modelagem e otimização por inteligência artificial. 

Os algoritmos de aprendizagem de máquina (machine learning) constituem algumas 

dessas técnicas que são capazes resolver os problemas mais complexos de modelagem, sem 

mesmo a pressuposição de distribuição dos dados. Esses algoritmos, em especial as redes 

neurais artificiais (ANN), vêm ganhando espaço em aplicações florestais mostrando-se 

eficientes para o manejo de florestas equianeas e inequianeas, retornando ganhos de precisão e 

redução de custos de projetos e empresas. 

 Além das ANN, que acumulam já uma considerável quantidade de estudos em 

aplicações florestais, alguns outros algoritmos começam a ser testados e mostram potencial para 

a melhoria da precisão e acurácia de trabalhos de modelagem, tais como as máquinas de vetores 

de suporte ou regressão de vetor de suporte (SVM ou SVR) e o algoritmo random forest (RF). 

 O objetivo do presente trabalho é comparar o desempenho dos algoritmos citados (ANN, 

SVR e RF) em algumas aplicações florestais, buscando entender o comportamento das 

predições bem como os melhores modelos para os casos estudados. 
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CAPÍTULO 1 

 

OPTICAL AND SAR VEGETATION INDICES FOR EUCALYPTUS VOLUME 

MODELING: A MACHINE LEARNING APPROACH 

 

1. INTRODUCTION 

In 2016, Brazil had around 6 million hectares of eucalypt forestry plantations (IBÁ, 2017). 

These forestry plantations became eligible to participate in global initiatives to mitigate global 

climate change as in the REDD+ program, due to the relevant storage of carbon and by assisting 

in some degree against deforestation of native forests. The feasibility of these projects may be 

affected by efficient methods to quantify forest parameters such as biomass and timber volume.  

At diverse levels of eucalypt forest planning, volume is the main variable for decision-making 

(MACDICKEN et al., 2015). Remotely sensed data do not estimate directly the amount of 

volume within forest stands, but rather, quantify other features such as crown size and canopy 

density, which are correlated to volumetric measures (BACCINI et al., 2004). 

Multispectral optical datasets can be used to estimate volume of eucalypt stands (BERRA 

et al., 2012), but exhibit some limitation to retrieve high biomass levels because of signal 

saturation (LU, 2005). Furthermore, data acquisition is highly affected by illumination and 

atmospheric conditions. SAR datasets are solar radiation independent and can be used to 

estimate forest wood volume at higher levels than multispectral optical datasets, especially from 

L-Band backscatter (DOBSON et al., 1992). Nevertheless, SAR datasets present high 

sensitivity to roughness and dielectric constants of targets (ANTROPOV et al., 2017b), which 

may limit accuracy of volume estimates. Optical and SAR datasets can complement each other, 

and working with them in synergy is a good strategy to overcome both sensor limitations 

(SHAO; ZHANG, 2016). 

Factors such as soil, terrain and climatic conditions may also influence on volume 

accumulation rates, development of forest structure, and consequently how we retrieve these 

variables through a remote sensing approach. To reduce the effect of those factors in the forest 
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canopy spectral response, single-band information are generally combined into vegetation 

indices (SANO et al., 2005). 

(VAFAEI et al., 2018) show that machine-learning algorithms can deal with nonlinear and 

complex data, and are more robust in comparison to conventional statistical methods of 

modelling to retrieve forest parameters via remotely sensed data. Therefore, the aim of this 

study was to assess the performance of optical and L-Band SAR indices for eucalyptus stand 

volume retrieval using three different machine-learning algorithms: Artificial Neural Network, 

Random Forest and Support Vector Machines. Specific objectives were: (a) what are the most 

suitable vegetation indices to retrieve wood volume of eucalypt stands? We hypothesize that 

combining optical and SAR indices can lead to a better accuracy; (b) what is the most 

appropriate machine-learning algorithm for the modeling procedure? Although some author 

endeavor the use of specific machine-learning algorithm for classification and regression cases, 

the three tested algorithm have been shown in literature a potential to deal with non-linear cases. 
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2. MATERIAL AND METHODS 

The eucalyptus (Eucalyptus grandis) forest plantations of this study are located at the 

eastern region of Minas Gerais State. The plots were distributed over an area of 837.12 km², 

consisting of clonal stands with 4-9 years of age and a density of 1666 trees per hectare (3x2 

meters of spacing). The average total height of trees was 25.9 meters. The dataset of this study 

derives from (OLIVEIRA, 2011) thesis database, where a stepwise multiple regression was 

used to predict different biophysical forest parameters based on ALOS satellite imagery (Fig.1). 

 

 

Fig 1. Location of the study area comprising inventory plots of commercial Eucalyptus 

(Eucalyptus grandis) forest plantations from eastern Minas Gerais in the southeastern Brazil. 

In detail, the plot mask mechanism used to extract pixel values. The map was built using 

software ArcGIS 10. 3 (http://ww.esri.com/software/arcgis). (SOUZA et al., 2019). 

 

Optical and L-Band SAR backscatter data were acquired by AVNIR-2 and PALSAR 

sensors on board of ALOS satellite in May of 2009. Multispectral optical dataset, 10m spatial 

resolution, were geometrically and atmospherically corrected. Data from PALSAR, about 12 m 

http://ww.esri.com/software/arcgis


15 
 

of spatial resolution,  which comprised backscatter of four polarizations (LHH, LHV, LVV and 

LVH) at 21.5º of incident angle, were converted to backscatter coefficients (σ°) according to 

(SHIMADA et al., 2006). 

Field plots comprised measurements taken from February to September 2009. Stand volume 

were estimated based on diameter at 1.3 meters and total height of trees within each plot. A 

number of 206 plots were selected for this study, with an average volume of 254 m3/ha, ages 

ranging from four to eight years old, mean dbh between 14.60 cm and 17.77 cm, mean total 

height from 22.47 to 28.23 m and stand density from 892 to 1149 trees per hectare. 

The DNs and σ° were extracted using a mask with similar shape and area of field plots. 

Field plots covered an area of 341 m² (18,46 m x 18,46 m) and encompassed more than one 

pixel. Data were extracted by weighted average of pixel values in plot mask area. 

The Vegetation Indices are presented as follows: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
        (1) 

𝑅 =
𝑁𝐼𝑅

𝑅𝑒𝑑
         (2) 

𝑅𝑝 =
𝐿𝐻𝐻

𝐿𝑉𝑉
         (3) 

𝑅𝑐 =
𝐿𝐻𝐻

𝐿𝐻𝑉
         (4) 

𝑃𝑡 =  𝐿𝐻𝐻 + 𝐿𝐻𝑉 + 𝐿𝑉𝑉 + 𝐿𝑉𝐻      (5) 

𝐵𝑀𝐼 =
𝐿𝐻𝐻+𝐿𝑉𝑉

2
        (6) 

𝐶𝑆𝐼 =
𝐿𝑉𝑉

𝐿𝑉𝑉+𝐿𝐻𝑉
         (7) 

𝑉𝑆𝐼 =
𝐿𝐻𝑉+𝐿𝑉𝐻

2
𝐿𝐻𝑉+𝐿𝑉𝐻

2
+

𝐿𝑉𝑉+𝐿𝐻𝐻
2

       (8) 

 

A supervised training was employed for model development, where models were trained 

using known field plot cases to predict unseen data. We tested three machine learning 

algorithms: Artificial Neural Networks, Random Forest and Support Vector Machines. 

ANN models utilizes a number of neurons in parallel to model a specific relationship and 

its accuracy is dependent on training dataset (HAYKIN; SIMON, 1994). 500 different MLP net 

architectures were trained with a range of 4 to 12 neurons in hidden layer, using Resilient 

Backpropagation algorithm, testing the following activation functions: logistic, Gaussian, 

identity, hyperbolic tangent, exponential. 

Random Forest is an ensemble algorithm that works with resampling methods on training 

dataset (bagging or bootstrap aggregation) and trees are constructed based on a random subset 
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of samples of training data. Finally, a set of individually trained decision trees along the levels 

of response variable are combined (HASTIE et al., 2009). In this study, after primary tests, we 

fixed 90 trees, 60% of training dataset for resampling and 7 and 3 inputs to be drawn by node 

for all input models and most important input models, respectively. 

Support Vector Regression work on training dataset determining an acceptance zone or 

margin along levels of response, restricting the flatness of this margin to be the maximum and 

delineating the regression based on this region. This mechanism ensures robustness to deal with 

unseen data. In non-linear cases, SVR employs kernel functions to map the data into a new 

feature space expanding the dimension of problem in an attempt to linearize the dataset 

(SMOLA; SCHÖLKOPF, 2004; HASTIE et al., 2009). For the present work, RBF (Radial 

Basis Function) was used as kernel and hyper-parameters, capacity (C) and kernel parameter 

(γ), were optimized via 10-cross-validation. 

To ensure the representativeness of all levels on training and test data, the dataset were 

stratified in six classes before splitting for training. Training and test subsets corresponding to 

65% and 35% from the dataset, respectively. To identify the most suitable predictors, a stepwise 

procedure was employed.  The input relative importance was assessed by removal-based 

approach, i.e., running each training with all but one input. Obtained error were normalized 

based on RMSE, and the most important input were that which resulted in the highest error 

value when removed from the database (KATTENBORN et al., 2015). 

We assessed the performance of models using determination coefficient (R²) from 

regression of predicted and observed values; root mean squared error (RMSE); and graphical 

analysis. 
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3. RESULTS 

Figure 1 shows that five main indices contributed, in different levels, to volume predictions 

of eucalyptus stands using the different machine learning algorithms: NDVI, BMI, Pt, R and 

VSI. The first index mentioned was the most important input for all models. 

 

 

Figure 1. Relative importance of inputs for models of three different machine-learning 

algorithms (Artificial Neural Network, Random Forest and Support Vector Machine) for 

volume predictions of eucalyptus stands. Inputs comprised optical and SAR vegetation indices 

from ALOS/AVNIR-2 and ALOS/PALSAR sensors, respectively. 

 

We trained models with all and the most important independent variables (inputs), in order 

to verify the effect of collinearity and dimensionality on results. With the most important inputs, 

models yielded results not significantly different from those with all indices as inputs (Table 

1). Random Forest models yielded the most accurate predictions, with a substantial value of 

coefficient of determination (R² = 0,778) and RMSE of 11,561m³/ha (4,578% of the mean 

volume of tested stands) for testing subset of models with the most important inputs. ANN 

showed intermediate results, with R² values up to 0,658 for testing subsets. SVM yielded the 

less accurate volume predictions of eucalyptus stands using optical and SAR vegetation indices, 

with R² up to 0,608 and RMSE about 6,130% of generalizing data. 

TABLE 1. Validation statistics of three machine-learning algorithms models (Artificial Neural 

Networks - ANN, Random Forest - RF and Support Vector Machines - SVM) using all 

vegetation indices and the most import  inputs (Ntrain = 134; Ntest = 72) 

Validation Statistics 
ANN   RF   SVM 

Train Test   Train Test   Train Test 

All Inputs         

R² 0,739 0,658   0,906 0,777   0,688 0,608 
RMSE 14,686 14,385  8,830 11,599  16,036 15,399 
RMSE% 5,725 5,700   3,445 4,590   6,240 6,134 

         
M.I.I.*         

R² 0,787 0,652    0,898 0,778   0,674 0,604 

RMSE 13,250 14,498  9,184 11,561  16,385 15,459 
RMSE% 5,158 5,758   3,584 4,578   6,357 6,132 

* M.I.: Most Important Inputs (NDVI, R, Pt, BMI and VSI) 
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Figure 2 shows that Random Forest algorithm model yielded more satisfactory results with 

predictions of stand volume dispersed more closely to the line of intercept equal to zero and 

slope equal to one. The scatterplot results corroborate with those from Table 1 that represented 

mean values. ANN and SVR models showed non-biased predictions (Figure 2a, 2b, 2e and 2f). 

Although RF model yielded the lowest residuals, the model slightly overestimated stands with 

the lowest levels of volume (<220m3/ha). 

 

Figure 2. Scatterplot of field measures versus predicted values of volume by three machine 

learning algorithms (Artificial Neural Network-ANN, Random Forest-RF, and Support Vector 

Machines-SVM) using all inputs (I; 2a, 2c and 2e) and the most important inputs: NDVI, BMI, 

Pt, R and VSI  (II; 2b, 2d and 2f). Validation statistics for test subset are presented. Black dots 

represent testing dataset. Gray marks represent training dataset. 
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4. DISCUSSION 

The high correlation of NDVI and LAI (Leaf Are Index) can bring information of forest 

vertical components of stands (MAIRE, LE et al., 2011). However, from a nadir-viewing 

remote platform, one may find some difficulty to measure the complexity of stands using only 

NDVI or R, since NIR band reflectance stabilizes at values of 7 to 8 of LAI (ALLEN; 

RICHARDSON, 1968). The complexity of forest stand structure is the main factor making the 

volume estimation challenging (LU, 2005). Unlike multispectral optical data that interacts with 

canopy at upper portions, L-band SAR data can penetrate the canopy surface and bring 

information from inside components of stands, especially from vertical structures with greater 

amount of volume contents (WOLTER; TOWNSEND, 2011). 

The high relative importance of SAR indices such as Pt, RMI and VSI in all assessed 

algorithms proved the complementarity of both sensors information. Overall, we therefore 

conclude that L-band SAR indices could provide important information that is not present in 

optical datasets, and their combination is valuable for accurate volume estimation. 

(FASSNACHT et al., 2014; SHAO; ZHANG, 2016) state that prediction method had a 

substantial effect on accuracy and was generally more important than sample size. ANN and 

SVM showed similar results with a medium correlation and greater values of error, this result 

could be attributed by similar mechanisms to predict for each level of response variable. Both 

algorithms restrict regression complexity by minimizing error values. On the other hand, RF, 

via decision trees, can section the levels deliberately and averages the results of all trees 

(HASTIE et al., 2009). RF showed a greater potential for modelling the dataset, but one must 

consider grouping representative samples of levels on training subsets, primarily the extreme 

levels (the lowest and greatest values) for a more stable resampling.  (REIS, DOS et al., 2018) 

assessed ANN, RF, SVR and Multilinear Regression to estimate volume using optical Landsat 

TM data. The authors’ results corroborated with the present work, with a relative RMSE of 

12,88%, 10,41% and  4,77% for ANN, SVR and RF respectively, concluding that Random 

Forest was the most suitable machine-learning algorithm for this modelling procedure. (SHAO; 

ZHANG, 2016) combined optical and SAR data to estimate biomass in Inner Mongolia by 

testing machine-learning algorithms, encountering the best results with Radom Forest 

Algorithms (R² = 0,82). (NAIDOO et al., 2014) by testing Multi-frequency SAR datasets found 

that RF and ANN outperformed SVR, similarly to the present work. 

The results of combining optical and SAR vegetation indices and machine-learning 

algorithms highlighted the important contribution of new sources of space-born data and 
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artificial intelligence methods to forest management. Concerning the current optical and SAR 

datasets available, Sentinel-1 (C-band SAR) and Sentinel-2 (multispectral optical bands) show 

a great potential to perform a more consistent monitoring when used in combination. 
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5. CONCLUSION 

For stand volume retrieval of eucalyptus plantation in eastern Brazil, the most suitable 

vegetation indices are: NDVI and R as optical indices and BMI, Pt and VSI as SAR indices, 

used in combination. Random Forest algorithm was the most appropriate machine-learning 

algorithm for the eucalyptus volume retrieval based on those remotely sensed data.  
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CAPÍTULO 2 

 

MACHINE LEARNING ALGORITHMS VERSUS STEM TAPER EQUATIONS: 

MODELING THE EFFECT OF INITIAL AGES ON TAPER AND LOG 

ALLOCATION OF EUCALYPT TREES IN BRAZIL 

 

1. INTRODUCTION 

Eucalypt stands are sources of wood and fiber for pulp and paper in Brazil, covering 

around 75% of the 7.8 million hectares of forestry plantations established all over the country 

(IBÁ, 2018). The planted tree industry embodied 1.1 per cent of all the Brazilian GDP in 2017, 

representing 6.1 per cent of industrial GDP (IBÁ, 2018). These plantations have an impressive 

productivity in comparison to other countries (~ 36 m³/ha.year), helping meet the high national 

and international demand for wood, and contributing for natural forests conversation. Most of 

Brazilian eucalyptus stands were usually established by using high densities of trees (3x3, 

2x2m, etc.) with a short rotation periods (~7 years). The optimum exploitation of these fast-

growing stands requires for a quick and accurate monitoring of volume. Studies on functional 

relationships between stem diameter and height are alternate approach to calculate volume of 

individual trees and different merchantable portions of the stem bole. 

The relation of diameter and height of a tree can be expressed mathematically by taper 

equations. Unlike conventional volume models, that only relates a single diameter measure with 

and the tree height, stem taper equations can return more accurate volume predictions of a tree 

or stands capturing the decreasing rate of diameter measures from bottom to the top of trees. 

These equations has long been of interest in forest management due to the convenience of 

calculus of stem diameter at any arbitrary height and the calculus of tree height for any portion 

of stem given specification of log diameters (CAMPOS; LEITE, 2013). Knowing the diameter 

or volume at any part of stem is strategically reasonable to maximize the income of each tree, 

given the diverse set of marketplace scenarios in terms of price and demand for wood. 
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Taper models can be categorized into three major groups: simple mathematical models, 

segmented models and variable-exponent taper equations. The models of first category relates 

relative diameter (Y) and relative height (Z) in polynomial (Prodan 1965; Hradeztky, 1972, 

Kozak, 1969), sigmoid (Garay, 1979; Biging, 1984), and volume compatible (Demaerschalk72, 

Ormerod88) equations. Aiming more flexibility of models and to diminish bias in the base of 

stems some authors proposed segmented equations (Max and Burkhart ,1976; Demaerschalk 

and Kozak, 1977; Parresol et al., 1987). The third category comprise models that attempts to 

estimate diameter of trees based on different geometric forms along the bole. 

A recent review of main taper equations used for managers in Brazil (ANDRADE; 

SCHMITT, 2017) verified that simple models have being used: Shoepfer, Hradeztky, 

Demaerschalk, Garay and Biging, when variable exponent models had already been proved to 

be more accurate (ANDRADE, 2014; SOUZA et al., 2018). Regarding only the simple models, 

researches underscore the great usage and accurate performances of Garay (SOUZA et al., 

2016) and Hradetzky models (RIBEIRO; ANDRADE, 2016). Therefore, the present paper 

compares Garay and Hadeztky and we also include Biging, a sigmoid funcrion, for its simplicity 

and integrable porperties. The variable exponent model K88, conceived for big size trees in 

Canada (MUHAIRWE, 1999), outperformed predictions for eucalypt trees aged with more than 

7 years, but a doubt remains on its performance for small size trees (SOUZA et al., 2018). Based 

on this last study and on Scolforo et al. (2018) we decided to compare variable exponent models 

of Kozak (1988) and Kozak (2004), given the good performances on both studies.  

At the rising age of artificial intelligence (LIU et al., 2018), some machine learning 

algorithms have been tested to estimate diameters of trees (SCHIKOWSKI et al., 2015, 2018; 

MARTINS et al., 2016; NUNES; GÖRGENS, 2016). Artificial Neural Networks outperformed 

taper equations and other machine learning algorithms. Greater part of research focus on 

residual study, overlooking behavior of relative diameter estimation at the different levels of 

relative height. Moreover, no prior study has shown the impact of taper models on log allocation 

for a multiproduct management.  

In this context, the present study aims to compare the best performing models on 

literature for eucalyptus trees to analyze behavior of different methods on diameter estimates 

and log allocation within small and medium sized Eucalypt trees in Brazil. We used three 

different categories of taper models: two categories of taper equations (simple and variable 

exponent models) and three machine learning algorithms. From this last, we for the first time 

introduce Support Vector Machines algorithm on tree taper application. Models tested were: 
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simple taper equations of Biging (1984), Garay (1979) and Hradeztky (1976); variable exponent 

equation of Kozak (1988) and Kozak (2004) (model I); Artifitial Neural Networks, Random 

Forest and Support Vector Machines algorithms. For log bucking optimization we implement 

a dynamic programming based on scenario formulated by (CAMPOS; BINOTI, 2014).  
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2. MATERIAL AND METHODS 

2.1. Data 

In present study, 158 eucalypt trees were sampled from plots of three ages of even-aged 

stands with density of 833 stems/ha (5x2.4 m). The sampled trees were distributed in three ages: 

45 trees for 40 months; 51 trees for 55 months aged; and 62 for 72 months aged. Table 1 

summarizes the statistics related to tree characteristics. 

Table 1.  Summary statistics for total height and dbh of Eucalypt trees used in this paper. 

Stand Age 
Number 

of trees 

Total Height (m) 
 

Diameter at 1.3m (cm) 

mean min max s.d. mean min max s.d. 

Fit Data           

40 months 30 19.183 13.700 22.600 2.997  11.764 6.680 17.030 3.300 

55 months 34 25.573 16.460 30.390 4.679  15.374 8.590 22.280 4.158 

72 months 41 27.391 16.080 33.980 5.506  17.212 8.280 25.150 4.959 

           

Validation Data           

40 months 15 19.318 13.900 22.950 3.290  11.731 6.680 16.550 3.368 

55 months 17 24.933 15.720 30.370 5.359  15.364 8.280 22.280 4.788 

72 months 21 27.994 20.000 33.860 4.993  18.060 9.870 24.830 4.729 

s.d: standard deviation; min: minimum values; max.: Maximum values. 

 

The tree dataset was divided into size classes based on diameter at breast height (DBH) 

for representativeness of all set within training data. Then, random selection was applied to 

each of size class for data splitting (training/testing dataset). For the first age (40 months) 30 

trees were selected for model development and 15 for model evaluation. In the same way, for 

55 and 72 months aged stands 34 and 41 trees, respectively, were selected for training the 

models, and 41 and 21, respectively, for testing (Figure 1). The variables total Height (H: m), 

diameter at breast height (DBH: cm) of each tree were measured. Diameter Outside Bark were 

measured at heights of 0.5, 1.0, 1.5, 2.0 m and then in intervals of 1m along the remainder 

portion of stem. 
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Figure 1. (a) Diameter at breast height and total height relationships and (b) relative tree 

diameter plotted against relative height of eucalypt trees used in this study from Bahia, Brazil. 

 

2.2. Taper equations 

Five taper equations were analyzed in this study, as follow: 

 

𝒅 = 𝒅𝒃𝒉. {𝛽1 + 𝛽2  ln [1 − (𝒁)
1

3. (1 − 𝑒
−

𝛽1
𝛽2)]} +  𝜀      (1) 

𝒅 = 𝒅𝒃𝒉. {𝛽1. [1 + 𝛽2. ln(1 − 𝛽3𝒁𝛽4)]} + 𝜀       (2) 

𝒅 = 𝒅𝒃𝒉. {𝛽0 +  𝛽1𝒁𝑝1 + 𝛽2𝒁𝑝2 + 𝛽3𝒁𝑝3 + ⋯ + 𝛽𝑛𝒁𝑝𝑛} + 𝜀     (3) 

𝒅 = 𝛼0𝒅𝒃𝒉𝛼1𝛼2
𝒅𝒃𝒉 (

1−√𝒁

1−√𝑖𝑝
)

𝛽1𝑍2 + 𝛽2 ln(𝑍+0,001) + 𝛽3√𝑍 + 𝛽4𝑒𝑍+ 𝛽5(
𝒅𝒃𝒉

𝑯
)

+ 𝜀    (4) 

𝒅 = 𝛼0𝒅𝒃𝒉𝛼1 (
1− √𝒁

4

1− √𝑖𝑝4 )
𝛽0+𝛽1[

1

𝑒
(

𝒅𝒃𝒉
4

)
] + 𝛽2𝒅𝒃𝒉

(
1− √𝒁

4

1− √𝑖𝑝4 )

+𝛽3(
1− √𝒁

4

1− √𝑖𝑝4 )

𝒅𝒃𝒉
𝑯

+ 𝜀    (5) 

Where: Z is h/H; d is predicted diameter, p is the power fraction for Hradetzky, ip is the inflection point, 

fixed in 0.25 for Kozak(1988) and 0.10 for Kozak (2004) I; dbh is the diameter at breast height; H is 

total height, h height at any arbitrary point on the stem; β is the coeficients or parameters of equations, 
e is neperian base. 

 

2.3. Machine Learning algorithms 

Simple taper equations were first conceived to estimate relative diameter by relative 

height. Thus, with these same models, diameter can be estimated based on relative height and 

diameter at breast height. In exponent variable models, equations include dbh/H to find a 

diameter measure. This way, machine learning algorithms models were developed in to 
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scenarios, diameter estimated by two and three inputs. Further, we analyses estimation behavior 

on relative diameter of all developed models. 

Artificial Neural Network are composed by artificial neurons referred to as simple 

processing unities (perceptrons), which are linked together and distributed in parallel way to 

undertake some task (HAYKIN, 2008; LEITE et al., 2011). We trained different architecture 

of multilayer perceptron ANN (MLP) with the algorithm Resilient Backpropagation, with input 

layer with independent variables (inputs) in each node, a hidden layer of nodes and a output 

layer.  In the hidden layer we tested 2-10 nodes or neurons and activations function tested were: 

sigmoid and tangent hyperbolic. Inputs were scaled, and the number of epochs were 

configurated in 3000 cicles, and the minimum error (RMSE) was 0.0001. 

Random Forest is an assembled algorithm that uses bagging algorithm (bootstrap 

aggregation), generating decision trees from a random number of inputs. The variable number 

of inputs makes resamples to produce a greater variety of trees (possible results). The results of 

each level of inputs are averaged producing a mean curve for all dataset (Hastie et al, 2009). 

For each scenario of fit mechanism (two and three inputs) we required the system to produce 

1000 trees.  

Support Vector Regresion fits a mean curve along cloud points “ignoring” discrepant 

data. The algorithm establish an acceptance zone, where data gain weight as far as are from this 

region. The boundaries of this acceptance zone, refered to as maximum margin, are established 

by support vectors, which is the more distant points accepted along the curve. The curve is 

optimized to be the more distant from support vectors (Figure 2). 

This acceptance of data, ignoring of discrepant data and calculus of the curve is 

parameterized by the following equation:  

       (6) 

Where C is the regulation term, w the vector of parameters associated with support vectors, b is a constant and ξ 

the slack variable of error out of ɛ precision, optimized by ν parameter.  The i index labels the n cases. The term 

Φ(xi) represents the input transformation data by kernel K(xi,xj) at features space, from which (Xi,Xj) =  Φ(xi). 

Φ(xj). 
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Figure 2. Maximum margin of Support Vector Regression optimized to ignore discrepant data. Fonte: YU et al.  

(2006). Disponível em: < http://research.ncku.edu.tw/re/articles/e/20080620/3.html >. 

For non-linear cases, SVR uses kernel tricks, mapping data into new feature space in 

order to linearize or simplify data (SMOLA; SCHÖLKOPF, 2004). We used the nu-SVR type 

and Gaussian Radial Basis (RBF) as kernel function. The RBF function showed a superior 

performance over linear, polynomial and sigmoid function. A 10-fold cross validation was use 

for hyperparameters tuning (C and gamma). 

 

2.4. Fit Statistics 

For choosing the best taper equation to be compared with machine learning we first used 

the following fit-statistics: 

 𝑟ŷy =
𝑛−1[∑ (�̂�𝑖−�̂�𝑚)𝑛

𝑖=1 (𝑦𝑖−�̅�)]

√[𝑛−1 ∑ (�̂�𝑖−�̂�𝑚)2𝑛
𝑖=1 ][𝑛−1 ∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1 ]
         (7) 

𝐵𝑖𝑎𝑠 =
∑ (�̂�𝑖−𝑦𝑖)𝑛

𝑖=1

𝑛
           (8) 

𝑆𝐸𝐸 =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛−𝑚
           (9) 

𝐴𝐴𝐵 =  √
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
           (10) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
          (11) 

 

Machine Learning Algorithms were compared using the correlation coefficient and 

RMSE (11). 

We also compared error along the relative height of the best ML and taper models. In 

this analysis, we can verify behavior of models at butt swell of the trees. 

 

2.5.( Comparing models and stem form by L&O test 
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Then identity statistical procedure proposed by Leite and Oliveira (2002), the L&O test, 

was used to verify final models performances (predicted x observed values) and similarity 

between the different models (comparison between methods). This test was also used to 

compare taper curve of the different ages. 

The L&O test comprises three main criteria to determine the equality of two analytical 

methods: (a) F test proposed by Graybill (1976), (b) t test for significance of mean error (mean 

bias) and (c) relation of correlation coefficient (rŷy) and the term term (1- |ē|). The modified F 

test proposed by Graybill (1976), evaluates coefficients of a linear regression between observed 

and estimated values, under the following null hypothesis H0: [β0 β1] = [0 1]. It tests whether 

the intercept is statistically equal to zero and the slope to 1, under the following statistics: 

 𝑌𝑗 =  𝛽0 + 𝛽1𝑌1 + 𝜀          (12) 

where β0 e β1 = linear coefficients; ɛ = random error with normal distribution with mean equals 

0. 

The F test statistics as follows: 

F(𝐻0) =
(𝛽−𝜃𝑇)

𝑇
(𝑌1

𝑇𝑌1)(𝛽−𝜃𝑇)

2.𝑅𝑀𝑆
        (13) 

 

where: β = [β0 β1] ; θ
T = [0 1].RMS = residual mean squared. If F(H0) ≥ Fα (2, n-2 d.f.) the nule 

hypothesis is rejected. Accepting H0 (i.e., F(H0) < Fα (2, n-2) ) implies that real and predicted 

values are statistically identical. 

The second criterion is testing if the bias or mean error (ē) is statistically equal to zero. 

A t test is applied under the hypothesis, H0: ē = 0, given that t = (ē - 0)/Sē , where  Sē = 

Sē/(n1/2), with /n-1 degrees of freedom. If tē≥ tα(n-1), null hypothesis is rejected and 

predictions are biased. In contrast, if tē < tα(n-1), the difference between observed and estimated 

values follows a random distribution with null mean. 

In F test statistics the term “2 RMS” is a denominator. Then, a great amount of small 

magnitude errors affects inversely the F(H0) value, making the test very sensitive to any error 

of greater magnitude within dataset. In this case, the authors suggest a comparison between the 

correlation coefficient (rŷy) and the term (1- |ē|) (Table 1). More details about the test can be 

found in the authors paper Leite e Oliveira (2002). 

In this study, we consider the equal performances if F(H0) test and mean error (ē = 0) 

is non-significative. When F(H0) test is significant and  mean error not, RMS were considered 

in the analysis, and  equality is stablished only if ryŷ  were greater than  (1 - |ē|) (case 5 in Table 

3). 
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Table 3.  Rules to validate and compare predictions of volume from eucalypt stands according to Leite and Oliveira 

(2002) identity test. 

Case F test (H0) tē RYŶ Decision  

1 n.s. n.s. ryŷ ≥ (1 - |ē|) Ideal Ŷ = Y 

2 n.s. n.s. ryŷ ≤ (1 - |ē|) Acceptable Ŷ = Y 

3 n.s. * ryŷ ≥ (1 - |ē|) Not valid Ŷ ≠ Y 

4 n.s. * ryŷ ≤ (1 - |ē|) Not valid Ŷ ≠ Y 

5 * n.s. ryŷ ≥ (1 - |ē|) Acceptable** Ŷ ≠ Y** 

6 * n.s. ryŷ ≤ (1 - |ē|) Not valid Ŷ ≠ Y 

7 * * ryŷ ≥ (1 - |ē|) Not valid Ŷ ≠ Y 

8 * * ryŷ  ≤ (1 - |ē|) Not valid Ŷ ≠ Y 

n.s. = non-significant at probability level of 5%; * = significant at probability level of 5%; ** = only in cases where 

high correlation greatly reduces the residual variance. 

 

2.6. Volume Predictions and Log Allocation 

Some conveniences of taper modelling techniques, as already explained, involves 

calculating volumes of restricted new datasets, i.e., two measurements (dbh and H) of new trees, 

and also log bucking. Log bucing is an operation that consists of cutting trees or stems into 

smaller logs of predefined lengths. Log allocation optimization was undertake on R 

environment using dynamic programming, where recursive function was used to iterate results 

for each tree maximizing the income. Log grading rules were based on Campos e Binoti (2014) 

that characterize a typical scenario of eucalyptus forestry plantations (Table 2). 

 

Table 4. Log grading rules for the present case based on Campos et al. (2013) work. 

Log Grade Dmin (cm) Dmax (cm) Log length (m) Price (US$)* 

1. Fuelwood 4.00 40.00 2.20 187.50 

2. Pulpwood 8.00 30.00 6.00 243.75 

3. Wooden Beam 8.00 25.00 3.50 300.00 

4. Sawnwood 15.00 50.00 3.00 562.50 

*US$1.00 = R$3.75 (February/2019); Dmin: minimum sacaling diameter ; Dmax: maximum scaling diameter 

 

Dynamic Programming used the recursive relation formulated as in (DYKSTRA, 1984) 

that define the state variable s as the total length of all logs cut from the stem through stage I 

(that is, including the log cut at stage i). The author defines vi(s, xi) as the value, in dollars, of 

the log xi associated the state s at stage i, where in the present case xi can be 2.20, 6.00, 3.50, 

3.00 m. Than it follows that: 

 

𝑓1(𝑠, 𝑥1) =  𝑣1(𝑠, 𝑥1)           (14)  

and 𝑓𝑖(𝑠, 𝑥𝑖) =  𝑣𝑖(𝑠, 𝑥𝑖) + 𝑓𝑖−1
∗ (𝑠 − 𝑥𝑖)  for i >1      (15) 

 

Equations can be combined into the following recursive relation: 
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𝑓𝑖
∗(𝑠) =  max

𝑥𝑖 = 2.2,   6.0,   3.5,   3.0   
{𝑣𝑖(𝑠, 𝑥𝑖) + 𝑓𝑖−1

∗ (𝑠 − 𝑥𝑖)}      (16) 

with 𝑓0
∗ ≡ 0 

 

Figure 3. Log gradding rules according to Campos e Binoti (2014) *US$1.00 = R$3.75 (February/2019) 

 

Volume of logs were calculated via estimation of diameter at a given interval of heights. 

Within this interval, we still estimated diameters by 10 to 10 centimeters and volume of sections 

was calculates via Smallian formula. 
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3. RESULTS 

3.1. Taper equations 

Overall results for taper equations shows that Kozak (1988) was the most accurate 

model with the highest values of ryŷ and lowest values of error (SEE, Bias and AAB) for 

diameter predictions (Table 4). Concerning the simple equations, which relates relative 

diameter in function of relative height, Hradetzky(1972) produced most accurate results  for 

AGE I, and Garay outperformed for AGE II and III. Regarding the variable exponents models, 

Kozak (2004) I model showed greater errors to estimated diameters of the three ages (Table 4). 

 

Table 4. Fit statistics (ryŷ, SEE, Bias and AAB) of diameter inside bark for Eucalyptus Trees from Bahia State, 

Brazil. 

Models ryŷ SEE SEE (%) Bias AAB 

Age 1      

    Biging (1984) 0.9958 0.4303 4.4300 0.0839 0.3475 

Garay (1979) 0.9963 0.4059 4.1788 0.0857 0.3225 

Hradetzky (1972) 0.9964 0.4049 4.1685 0.0907 0.3169 

      

Kozak (1988) 0.9977* 0.2983* 3.0711* 0.0100* 0.2160* 

Kozak (2004) 0.9965 0.3668 3.7763 0.0284 0.2562 

      

Age 2      

    Biging (1984) 0.9940 0.7162 6.1164 -0.3126 0.5044 

Garay (1979) 0.9946 0.6191 5.2872 0.0708 0.4416 

Hradetzky (1972) 0.9945 0.6926 5.9149 -0.3053 0.5083 

      

Kozak (1988) 0.9955* 0.5583* 4.7679* 0.0464* 0.3701* 

Kozak (2004) 0.9946 0.6170 5.2692 0.0767 0.4457 

      

Age 3      

   Biging (1984) 0.9954 0.6634 5.2086 0.0732 0.5080 

Garay (1979) 0.9961 0.5910 4.6402 0.0612 0.4522 

Hradetzky (1972) 0.9947 0.7443 5.8438 -0.3814 0.5801 

      

Kozak (1988) 0.9973* 0.4634* 3.6383* -0.0463 0.3373* 

Kozak (2004) 0.9968 0.4992 3.9313 0.0027* 0.3638 

 

Variable exponent models showed better performance for diameter estimation in 

relation to simple equations, with pronounced results for AGE I and AGE III. By density graph 

of errors (Figure 4) Kozak (1988) model showed greater part of errors at zero percentage 

outperforming all models at the three different ages. Therefore, we selected Kozak (1988) 

model for further comparison with machine learning algorithms. 
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Figure 4. Percentage Bias (Bias%) distribution of eucalyptus tree diameter for testing dataset of five taper models: 

Biging(1984), Garay(1979), Hradetzky(1972), Kozak(1988) and Kozak (2004) I, in three ages: 40 months (n = 

15), 55 months (n = 17) and 72 months (n = 21). 

 

3.2. Machine Learning models 

We tested three machine-learning algorithms under two fit mechanism: firstly, models 

were fit in order to predict relative diameter in function of relative height, simulating simple 

equations mechanism. Afterwards we fit models aiming to predict directly stem diameter in 

function of diameter at breast height, total height and height at any point along the stem. This 

last scenario simulates fit mechanism of variable exponent equations. In the first scenario, RF 

outperformed for AGE I, while SVR showed greater accuracy for AGE II. Both RF and SVR 

showed good results for AGEIII. In the second condition, ANN showed better performance for 

all ages and these results outperformed overall comparison. 

Tabela 5. Fit statistics of diameter inside bark estimated by three different machine learning (ML) algorithms: 

Artificial Neural Networks (ANN), Random Forest(RF) and Support Vector Machines for Eucalyptus Trees from 

Bahia State, Brazil. 

ML models 
Age1  Age2  Age3 

ryy RMSE RMSE(%)  ryy RMSE RMSE(%)  ryy RMSE RMSE(%) 

            

ANN I 0.9966 0.3909 4.0247  0.9947 0.6136 5.2398  0.9963 0.6136 4.8173 

RF I 0.9966 0.3755 3.8661  0.9945 0.6104 5.2133  0.9964 0.6104 4.7929 

SVR I  0.9963 0.4704 4.8425  0.9947 0.6024 5.1446  0.9961 0.6024 4.7297 

            

ANN II  0.9975* 0.2980* 3.0678*  0.9956* 0.5513* 4.7081*  0.9977* 0.3983* 3.4015* 

RF II 0.9975 0.3651 3.7584  0.9945 0.5683 4.8533  0.9974 0.6183 4.8542 

SVR II 0.9960 0.3810 3.9228  0.9930 0.5948 5.0796  0.9969 0.6948 5.4549 

            

ryŷ: correlation between real and estimated values; RMSE: root mean squared error; I indicates estimations based 

on 2 inputs: Z and dbh; II indicates estimations based on 3 inputs: h, H and dap; Z is the relative height (h/H), H 

is total height of a tree, h is the height at any arbitrary point of stem.*Overall best performance. 

 

Figure 5 shows percentage bias distribution of the three ML models under the second 

condition. ANN presented greater density of error around zero percentage of bias for ages I and 

III. RF yielded fit statistics close to ANN in all ages, but bias density close to zero was greater 

in age II. In the second condition, both ANN and RF showed good performances for estimation 

for test dataset. 
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Figure 5. Percentage Bias (Bias%) distribution of eucalyptus tree diameter for testing dataset of three machine 

learning (ML) algorithms: Artifitial Neural Networks (ANN), Random Forest(RF) and Support Vector Machines, 

in three ages: 40 months (n = 15), 55 months (n = 17) and 72 months (n = 21). 

 

3.3. Comparison of modeling approaches 

We selected Age 3 to analyses behavior of different approaches to model eucalyptus 

tree tapering. Under the first scenario of fit mechanism, ML models yielded a single curve when 

relative diameter is plotted against relative height, just as Garay (1979), a simple taper equation 

model (Figure 6a – 6d). In this scenario, a unique variable is used as input (independent 

variable) and RF had a pronounced flexibility in comparison to other models. In the second, a 

cloud of points can observed instead of a single curve in relative diameter versus relative height 

plot. In this cases, at least three inputs were used: dbh, H/h and dbh/H for Kozak 88 taper 

equation; and dbh, H and h for ML models. The second fit mechanism produced more than one 

response by each level of relative height, since more than one variable was used as input. The 

resulted “cloud of points” produced smaller errors corroborating with performances in the 

previous analysis of fit statists and graphical analysis. 
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Figure 6. Behavior of different techniques for taper modeling. Figures (a) to (d) depict taper curves fit using only 

Z as input by, respectively, Garay (1979), ANN, RF and SVR models. Figures (e) to (h) depict estimates of relative 

diameter (Y) with diameter estimated using h, H and dbh as inputs in Kozak (1988), ANN, RF and SVR models, 

respectively. Gray dots represents real values and black dots estimates of relative diameter.   

 

 

Figure 7 shows the behavior of methods when they are demanded to predict diameters 

for tree with a pre-determined dbh and H. We used an average tree of dataset for the analysis 

(DBH = 15.91 cm , H = 27.41 m). K88, ANN and RF yielded a continuous curve depicting the 

tree profile. However, RF created a step way curve depicting the behavior of algorithm to deal 

with the data. Because of step behavior and optimization of log bulking using RF model did not 

converge in an acceptable time (more than 24 hour), so that we decided to remove RF from 

analysis. In further analysis, we only consider results of Kozak (1988) model, ANN and SVR 

models under the second condition of fit, i.e., diameter estimated using three input (dbh, H and 

h). 



39 
 

 
Figure 7. Tree profiles generated using K88, ANN, RF and SVR models for an eucalyptus tree with diameter at 

breast height 15.92 and total height of 27.41, at 72 months or 6 years aged (average tree of dataset). 

 

We evaluated models performances along the tree bole (Tabel 6 and 7). For Age I, SVR 

produced biased estimates for base of trees, whereas ANN better predicted this portion. K88 

showed less bias for upper portion of trees, expect for the extreme tree top class (Table 6). For 

Ages II and III, K88 and ANN showed similar behavior and outperformed the majority of tree 

portions. Concerning the RMSE values, ANN models produced the lowest values of the 

statistics for majority of height classes, mainly at the bottom portions in the three ages (Table 

7). 

 

Table 6. Average Biases of estimating inside bark diameters of eucalyptus trees using the Kozak (1988) (K88), 

Artificial Neural Networks (ANN) and Support Vector Regression (SVR). 

 
 

 

 

 

 

 

k88 ann svr k88 ann svr k88 ann svr

10% 726 0,016 0,019 -0,066 -0,049 -0,095 -0,211 -0,126 -0,119 -0,190

20% 190 -0,036 -0,002 -0,194 0,130 0,104 -0,097 0,060 0,139 -0,107

30% 190 -0,065 0,045 -0,052 -0,131 0,052 0,086 0,000 0,097 0,101

40% 183 -0,014 0,063 0,096 0,007 0,110 0,175 -0,084 -0,104 -0,063

50% 194 0,051 0,046 0,094 0,132 0,148 0,029 0,045 -0,033 -0,083

60% 180 0,030 -0,099 -0,005 0,302 0,255 0,337 0,059 0,000 0,037

70% 186 0,028 -0,098 0,041 0,170 0,155 0,269 0,080 0,042 0,069

80% 185 0,010 0,022 0,074 0,012 0,052 0,210 0,090 0,128 0,204

90% 198 -0,055 0,145 -0,056 0,078 0,304 0,300 -0,204 0,027 0,139

100% 183 0,180 0,013 -0,072 0,119 0,104 0,097 -0,169 -0,170 -0,115

55 months 72 months
nZ

40 months



40 
 

Table 7. Root mean squared error (RMSE) of estimating inside bark diameters of eucalyptus trees using the Kozak 

(1988) (K88), Artificial Neural Networks (ANN) and Support Vector Machines (SVM). 

 
 

According to L&O test SVR models produced diameter estimates statistically different 

from real values (p < 0.05) for all the three ages. In contrast, K88 and ANN models showed 

results equal to observed values and performances were comparable (p <0.05) (Table9). 

 

Table 9. L&O test performance of three modeling methods – Kozak (1988), Artificial Neural Network (ANN)  

and Support Vector Regression (SVR). 
Ages Models F(H0)   t(ē)   rŷy ≥ 1 - ē  RMS n Results 

I 

K88 0,322 ns 1,350 ns yes 0,086 184 Ŷ = Y equal 

ANN 0,554 ns 0,824 ns yes 0,089 184 Ŷ = Y equal 

SVR 0,840 ns 0,243 ns no 0,145 184 Ŷ ≠ Y different 

                    

K88 x ANN  1,862 ns 1,007  ns yes  0,038 184 Ŷ = Y equal 

K88 x SVR 2,221 ns 2,716 * yes 0,071 184 Ŷ ≠ Y different 

ANN x SVR 5,149 * 2,087 * yes 0,063 184 Ŷ ≠ Y different 

II 

K88 3,938 ns 2,492 ns yes 0,296 272 Ŷ = Y equal 

ANN 7,345 ns 3,014 ns yes 0,290 272 Ŷ = Y equal 

SVR 11,406 * 2,854 * yes 0,448 272 Ŷ ≠ Y different 

                    

K88 x ANN 3,307 * 0,547 ns yes 0,059 272 Ŷ = Y acceptable 

K88 x SVR 8,280 * 1,453 ns yes 0,208 272 Ŷ ≠ Y different 

ANN x SVR 6,847 * 1,318 ns no 0,159 272 Ŷ ≠ Y different 

III 

K88 1,815 ns 0,526 ns yes 0,209 352 Ŷ = Y equal 

ANN 1,209 ns 0,325 ns yes 0,172 352 Ŷ = Y equal 

SVR 7,766 * 0,134 ns no 0,228 352 Ŷ ≠ Y different 

                    

K88 x ANN 1,778 ns 0,078 ns yes 0,061 352 Ŷ = Y equal 

K88 x SVR 8,762 * 0,256 ns no 0,162 352 Ŷ ≠ Y different 

ANN x SVR 8,704 * 0,244 ns no 0,111 352 Ŷ ≠ Y different 
ns and * indicates de significance of L&O test rules at 95% of probability 

3.4. Age comparison 

We also compared the effect of age on eucalyptus  tree tapering using L&O test. The 

taper curve of the three ages were statically different when predicted using K88 and ANN model 

(p <0.005). Age 1 (40 months) showed a more cylindrical behavior, whereas age 3 (72 months) 

presented a more conical form. Age 2 taper curve showed intermediate results between ages 1 

and 3. 

 

k88 ann svr k88 ann svr k88 ann svr

10% 726 0,368 0,341 0,511 0,731 0,684 0,900 0,514 0,431 0,609

20% 190 0,346 0,201 0,367 0,510 0,359 0,532 0,440 0,410 0,449

30% 190 0,379 0,267 0,367 0,460 0,342 0,500 0,504 0,389 0,432

40% 183 0,407 0,307 0,332 0,673 0,492 0,641 0,389 0,309 0,392

50% 194 0,408 0,301 0,254 0,569 0,438 0,402 0,636 0,427 0,443

60% 180 0,370 0,287 0,216 0,691 0,516 0,694 0,406 0,277 0,370

70% 186 0,348 0,262 0,222 0,631 0,526 0,640 0,488 0,402 0,378

80% 185 0,324 0,216 0,239 0,737 0,550 0,690 0,502 0,496 0,460

90% 198 0,306 0,338 0,269 0,676 0,684 0,703 0,627 0,506 0,421

100% 183 1,062 0,252 0,327 0,444 0,322 0,394 0,674 0,429 0,498

Z n
40 months 55 months 72 months
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Table 9. Identity (equality) test of taper curves from three different ages of eucalyptus trees using Kozak(1988) 

and Artifial Neural Network models at 95% of probability. 

Ages Models F(H0)   t(ē)   rŷy ≥ 1 - ē  RMS n Result 

K88 

I x II 42,921 * 4,774 * yes 0,022 40 Ŷ ≠ Y different 

I x III 85,600 * 9,003 * yes 0,038 40 Ŷ ≠ Y different 

II x III 57,216 * 13,345 ns no 0,024 40 Ŷ ≠ Y different 

                      

ANN 

I x II 46,386 * 4,896 * yes 0,024 40 Ŷ ≠ Y different 

I x III 71,013 * 8,179 * yes 0,043 40 Ŷ ≠ Y different 

II x III 40,257 * 11,365 * yes 0,023 40 Ŷ ≠ Y different 

 

3.5. Log allocation via Dynamic Programming 

The most accurate models according to previous analysis, K88 and ANN, yielded 

income of US$16,169.88 and US$ 16,339.02 respectively. From the machine learning models, 

only ANN and SVR converged results of log bucking. RF did not converge results. SVR 

produced inferior income than ANN. Regarding the taper models, the simple taper equations 

returned higher values of income in relation to variable exponent models and ML models. 

Variable exponent model of K04I also produced higher values of income in comparison to K88. 

Therefore, we could conclude that choosing a wrong taper model one can overestimate the 

income of trees in the considered scenario of assortment of wood. 

  
Figura 8. Log allocation of eucalytus trees at 55 months of 6 years aged in Bahia, Brazil. Income and amount of 

logs optimized via dynimic programming and taper models. Grades indicates log grading rules according to Campo 

e Binoti (2004) research. Wood destination respetively for: 1 - Fuelwood, 2 - Pulpwood, 3 - Wooden Beam and 4 
- Sawnwood. 
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4. DISCUSSION 

We compared diameter prediction and log allocation of eight taper models for 

eucalyptus trees at initial ages in a plantation from Bahia state in Brazil. We tested three 

categories of taper models: simple equations, variable exponent equations and machine learning 

models. Variable exponent equation of Kozak (1988) and ANN models outperformed the 

comparison and showed comparable behavior for tree tapering for the three initial ages. Model 

fit with more than two variables as inputs produced best accurate diameter estimates: dbh, Z 

and dbh/H for Kozak (1988) model, and dbh, h, H for ANN model. Logs were allocated with 

optimization based on taper models and scenario as in Campos e Binoti (2014). In this scenario, 

equations with worst fit statistics performances returned greater values of income in relation to 

the most accurate models.  

Studies can use taper equations for capturing variability of all trees within a dataset at 

stand or holding level investigating any treatments (SOUZA et al., 2018; LEITE; SILVA, M. 

L M DA; et al., 2011). This convenience of equations has long been used to answer effects of 

any variable or condition into tapering behavior (NOGUEIRA et al., 2008). In this case, 

flexibility of equations is a desirable property restricted to different types of taper equations: 

segmented, compatible, sigmoid, etc. Machine learning algorithms are very flexible methods, 

but differ from equations in the fit mechanism. Some part of dataset must be separated for 

training the models, and at least another one for testing. Therefore, for a fair comparison 

between models, we used the last mechanism of fit, splitting data into training and testing data 

set. 

 

4.1. Taper Models 

Concerning the equations, Kozak (1988) outperformed, in line with previous studies as 

Andrade (2014) and Souza et al. (2018). Muhairwe (1999) ascribe accuracy of K88 model to 

the inclusion of dbh/H which is high correlated to live crown ratio, and the inverse of stem 

height, which seems to improve accuracy on the base deformation. K04I yielded less accurate 

estimates, notably for the second age. K88 has a fixed inflection point of 0.25, a value used for 

eucalyptus plantation (MUHAIRWE, 1999). According to Newnham (1992) this is the relative 

height where neiloidal form of the butt section changes to paraboloidal form of the stem. The 

inflection point for K04I is of 0.10, a value used for Canadian species dataset, what may explain 

inferior results of this model. Another possible explanation according to the present study is 
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that more than two independent variables gives the equation a one more dimension for 

estimating diameter. 

Two well used simple equations known for their good performances were compared in 

this study: the sigmoid equation of Garay(1979) and fraction polynomial equation of Hradeztky 

(1972). Hradetzky (1972) as a polynomial model was expected to better predict diameter, but 

only at the fist age this model outperformed Garay(1979). The last equation showed better 

results for ages II and III. Garay (1979) equation relates relative diameter and relative height in 

a sigmoid function, and has produced the most accurate predictions of diameter for eucalyptus 

trees when compared with simple taper equations (SOUZA et al., 2016). One can say that the 

only disadvantage of Garay (1979) model is the non-integrability, but volume of any portion of 

the trunk can be calculated iteratively. Biging (1984) is also a sigmoid function and can be 

integrated, but with inferior flexibility. 

 

4.2. Machine Learning Algorithms 

ANN outperformed machine learning algorithms tested, especially in second fit 

condition, using three input variables. This performance could be attributed for more 

explanatory variables and for great flexibility of ANNs. As a high polynomial order curve, they 

are optimized to approximate a function to the training dataset, restricted to performances on 

validation dataset, avoiding overfitting. 

SVR showed better results in comparison with taper equations, but for diameter 

predictions using h, H and dbh as inputs (second scenario) was less accurate than ANN and RF. 

SVR are by nature less flexible than ANN model, since the its development includes restrictions 

in an attempt to ignore discrepant data, rendering the algorithm a more rigid behavior. Some 

authors shows that SVR with Radial Basis Function has a very similar behavior of Radial ANN 

(HAYKIN, 2008). One of SVR models hyperparameter, the band of Gaussion Kenel Function, 

is optimized to deal with data under no prior assumption. However, if SVR models include a 

great number of treatments, i.e., classes of categorical data as inputs, optimizing the band of 

kernel can benefit a number of class and, in the same way, affect classes with different 

distributions. Therefore, managers must be careful with SVR models at a holding level 

involving a great number of strata or treatments. 

After ANN, RF model showed the best performances for majority of cases. RF 

algorithm showed the greatest flexibility in comparison to all tested models when only one 

variable was request to predict relative diameter (first fit condition). This property can be assign 
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to decision trees within the algorithm that split the input levels into intervals as much as 

necessary to reach a minimum error in training (HASTIE et al., 2009). However, as measures 

were taken at least by 0.5 m of interval one only estimate value may be expect to this interval. 

In the RF model it represents a leaf (final branches). In this study, this property of RF 

predictions could be observed by the “step way” profile tree curves (Figure 7). The results of 

RF were disfigured for log allocation algorithm, once volume were calculated in intervals of 

0.1 m. Most studies underscore the weakness of RF to forecast out of the range of value from 

training dataset. The present study confirmed this property with inaccurate RF predictions out 

of sample intervals. 

 

4.3. Methods Comparison 

We verified more than one relative diameter output (Y) for a same level of relative 

height (Z). Rather than a one response at each level of Z, as in simple equations, K88 relative 

diameter predictions exhibit a “cloud of points”. Arrangement of dbh and dbh/H in equation 

implicitly add the information if trees are dominant or dominated, since plantations include 

trees with same dbh and different H or vice versa. Adding a new dimension, new variable, to 

taper equations increased the accuracy of estimates. This also could observed for machine 

learning models when more than two variables (h, H and dbh) increased the accuracy of models 

trained with h/H and dbh. 

Beyond the statistical analysis, some operational purposes must be taken into account. 

K88 equation can be used for research purposed not splitting the dataset and seeking to answers 

any questions about one or fewer treatments. However, with more than one treatment, equality 

of parameters must be tested via an identity test (LEITE; OLIVEIRA, 2002). ANN models is 

also a very flexible method that can capture taper behavior of any treatment, and its major 

advantage is on operational purposes. ANN can deal with many treatments at a time, and predict 

for all them with a unique model (LEITE et al., 2011). 

 

4.4. Age effect and Log allocation 

The present study shows that from non-integral models (Garay, K88, K04I, ANN, SVR) 

one can calculate volume of new trees with dbh and H measurements or volume of different 

portions of trunk iteratively. Essentially, diameter can be estimated for any arbitrary height of 

interval of heights and volume can be calculate from sections within the interval. We suggest 

the calculus of sections with height intervals shorter than 10 cm at least. Similarly, height can 
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be estimated to a given diameter iteratively. That is the mechanism used inside the optimization 

algorithm to calculate volume an allocate logs. 

According to Ferraz Fillho et al. (2018), increment of diameter of eucalyptus trees 

correspond to an average of 4.9 cm per year, with highest values for unthinned treatments. The 

authors consider canopy closure and consequently excessive competition between trees at age 

of 60 months (5 years). Taper curves of present study were significantly different showing 

effect of initial ages on trunk shape. The first measured age showed more cylindrical form. At 

the age of 72 months (6 years), eucalyptus trees showed a more conical behavior revealing 

increment in basal area. Major part of high dense Brazilian eucalyptus stands has rotation 

periods around 7 years. In this paper, we simulated a scenario of multiproduct management that 

eucalyptus trees may be subjected. We verified that choosing a wrong taper model, planning 

can be affect with overestimation of income.  
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5. CONCLUSION 

 

• Variable exponent equation of Kozak (1988) and Artifitial Neural networks 

outperformed the comparison, showing estimated diameters equal to real values according to 

L&O test. 

• Random Forest generated misleading diameter estimations affecting optimization 

algorithm for log allocation. Tree profile derived from RF model presented “step way” 

behavior. 

• Both Kozak (1988) and ANN models showed comparable results according to L&O 

test. 

• For operational purposes, when diameter estimations is demanded with a high amount 

of treatments ANN model must be preferred. In contrast, simple taper equations should be 

avoid, unless for didactic purposes. 

• Volume calculation of new trees or logs can be calculated iteratively with any model, 

if computational equipment is available. 

• In the considered scenario of densed Brazilian eucalyptus plantations, choosing a 

wrong taper model, planning can be affect with overestimation of income. 

• Taper curves were different for the three ages analyzed. Trees at the first ages were 

more cylindrical, and trees at 72 months or 6 years of age were more conical. 
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7. APPENDIX 

Appendix A. Estatísticas de Qualidade de Ajuste (mostrar estatística F quando precisar e teste de 

igualdade de parâmetros) 

 α0 α1 α2 β0
 β1 β2 β3 β4 

Age 1         

   Biging (1984) - - - - 1.1781 0.3221 - - 

Garay (1979) - - - 1.207 0.246 0.983 0.261 - 

Hradetzky (1972) 1.209 -0.230 -0.563 -1.267 -2.1495 0.8975 2.114 - 

Kozak (1988) 0.850 1.077 0.986 -0.070 -0.018 -0.185 0.264 0.142 

Kozak (2004) 1.287 0.932 - 0.324 0.204 0.006 -0.3186 - 

         

Age 2         

    Biging (1984) - - - - 1.1386 0.3329 - - 

Garay (1979) - - - 1.212 0.261 0.978 0.255 - 

Hradetzky (1972) 1.222 -0.709 -0.180 -0.276 - - - - 

Kozak (1988) 0.883 1.012 0.997 -0.028 -0.060 0.3445 0.1036 -0.023 

Kozak (2004) 1.277 0.936 - 0.178 0.544 0.006 -0.388 - 

         

Age 3         

    Biging (1984) - - - - 1.1545 0.3532 - - 

Garay (1979) - - - 1.183 0.287 0.966 0.273 - 

Hradetzky (1972) 1.181 -0.796 -0.152 0.205 - - - - 

Kozak (1988) 0.989 0.934 1.000 -0.407 0.004 -0.560 0.573 -0.008 

Kozak (2004) 1.2127 0.9129 - 0.4808 0.0205 0.0001 -0.1705 - 

* βn for Kozak (1988) correspond to βn+1. ** Hradetzky (Y11: 1.000; 10.000; 0.060; 4.000; 0.005; 5.000/ Y12: 

1.000; 0.005; 5.000/Y13: 1.000; 0.005; 10.000) 
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Appendix B. Residual boxplots of volume estimation of eucalypt trees from different dbh classes at 

ages I (40 months), age II (55 months) and age III (72months). Machine Learning Algortihms (ANN, 

RF and SVR) models fit using h, H and dbh as inputs and d as output.
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CONCLUSÕES GERAIS 

 

Dois estudos de casos forma abordados, o primeiro com a predição de volume de plantios de 

eucalipto com dados orbitais óticos e radarmétricos, e o segundo com a estimativa de diâmetro do fuste 

de árvore de eucalipto provindos de plantios. Os três algoritmos testados (ANN, SVR e RF) mostraram 

desempenho ou igual ou superior a regressão linear múltipla e regressão não-linear (abordagens 

convencionas). 

O RF se mostrou um algoritmo muito flexível para os casos de regressão, especialmente para a 

predição de volume por sensoriamento remoto. Entretanto os modelos gerados são limitados a predizer 

em uma amplitude e intervalo dado das mensurações das amostras. Para a estimativa de diâmetro do 

fuste, a não ser que mensurações sejam tomadas em intervalos pequenos e grandes amplitude de classes 

de tamanho de árvores amostras, o algoritmo RF se mostrou inapropriado. 

O algoritmo SVR configurada com a função kernel RBF, e a ANN configurada com a função 

de ativação sigmoide, preservaram a continuidade das funções, mostrando-se apropriadas para 

estimativas fora do intervalo de mensuração, especialmente para o caso das funções de afilamento. Entre 

esses dois algoritmos, a ANN se mostrou muito mais flexível para lidar com a modelagem quantitativa 

(regressão), especialmente quando são envolvidas variáveis categóricas com muitos fatores (estratos, 

classes, etc.) 

 


