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RESUMO 
 
 
SILVEIRA, Vitor Alves da, M.Sc., Universidade Federal de Viçosa, fevereiro de 2021. 
Modelagem e mapeamento de inselbergs no domínio da Mata Atlântica e Caatinga, Brasil. 
Orientador: Alexandre Rosa dos Santos. Coorientador: Carlos Ernesto Gonçalves Reynaud 
Schaefer. 
 
 

Os Inselbergs são afloramentos de rochas de proporções monolíticas, abrigando níveis altos de 

diversidade de plantas e endemismo em diversas regiões geográficas do globo. No Brasil 

encontra-se uma das maiores concentrações de Inselbergs do planeta, e pesquisas são 

necessárias para evidenciar locais representativos para conservação. Nesse contexto, o presente 

estudo avaliou o desempenho de algoritmos de aprendizado de máquina no mapeamento de 

Inselbergs. Especificamente, buscou-se predizer e espacializar os Inselbergs usando algoritmos, 

selecionando covariáveis importantes na espacialização desses afloramentos rochosos em 

gradiente climático do domínio atlântico do Brasil. Técnicas de classificação de imagens, 

algoritmos de aprendizado de máquina e modelagem geoespacial foram usadas para mapear a 

distribuição dos Inselbergs e selecionar áreas relevantes para conservação ecológica e ambiental 

desses ambientes ameaçados por pressões antrópicas e mudanças climáticas. De acordo com os 

resultados, os modelos estudados foram classificados com concordância substancial – 

Substantial (0,61-0,80) a quase perfeito – Almost Perfect (0,81-1,00) na classificação. Os 

algoritmos GBM, svmRadialSigma, C5.0 e RF apresentaram os melhores resultados na 

aproximação da realidade no mapeamento das paisagens típicas de Inselbergs estudadas. A 

metodologia utilizada neste estudo revela grande potencial de uso para subsidiar decisões de 

seleção de paisagens típicas de Inselbergs no contexto dos biomas Mata Atlântica e Caatinga 

para proteção e gestão ambiental eficiente da biodiversidade e geodiversidade. A metodologia 

proposta pode ser adaptada à diferentes áreas e biomas do mundo, com sucesso. 

 

Palavras-chave: Aprendizado de máquina. Geotecnologia. Sensoriamento Remoto. Predição. 

 

 

 

 
 
 
 
 



 
 

 

ABSTRACT 
 
 
SILVEIRA, Vitor Alves da, M.Sc., Universidade Federal de Viçosa, February, 2021. Modeling 
and mapping of Inselbergs in the domain of the Atlantic Forest and Caatinga, Brazil. 
Advisor: Alexandre Rosa dos Santos. Co-advisor: Carlos Ernesto Gonçalves Reynaud Schaefer. 
 
 
Inselbergs are outcrops of rocks of monolithic proportions, harboring high levels of plant 

diversity and endemism in various geographical regions of the globe. Brazil has one of the 

largest concentrations of Inselbergs on the planet, and research is needed to highlight 

representative sites for conservation. In this context, the present study evaluated the 

performance of machine learning algorithms in Inselberg mapping. Specifically, we sought to 

predict and spatialize the Inselbergs using algorithms, selecting important covariates in the 

spatialization of these rocky outcrops in the climatic gradient of the Atlantic domain of Brazil. 

Image classification techniques, machine learning algorithms and geospatial modeling were 

used to map the distribution of Inselbergs and select areas relevant to ecological and 

environmental conservation of these environments threatened by anthropogenic pressures and 

climate change. According to the results, the studied models were classified with substantial 

agreement - Substantial (0.61-0.80) to almost perfect - Almost Perfect (0.81-1.00) in the 

classification. The GBM, svmRadialSigma, C5.0 and RF algorithms showed the best results in 

approaching reality in mapping the typical Inselbergs landscapes studied. The methodology 

used in this study reveals great potential for use to support decisions on the selection of typical 

Inselberg landscapes in the context of the Atlantic Forest and Caatinga biomes for the protection 

and efficient environmental management of biodiversity and geodiversity. The proposed 

methodology can be successfully adapted to different areas and biomes in the world. 

 

Keywords: Machine Learning. Geotechnology. Remote Sensing. Prediction. 
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1. Introduction 

Brazil has one of the highest concentrations of Inselbergs of the world and according to 

Ab’Sáber (2003) on the Atlantic façade, from humid to semi-arid, typical Inselbergs landscapes 

occur. These are preferably distributed to the north of the Planalto da Borborema, in Quixadá ( 

Ceará), Patos (Paraíba), Itatim (Bahia), Seridó region (Rio Grande do Norte) and Pernambuco 

(Jatobá, 1994; Maia et al., 2016; Maia and Nascimento, 2018; Rodrigues et al., 2019).  

The largest and most significant areas of Inselbergs are located along the Atlantic 

Mobile Belt, whose main distribution area in the Atlantic Forest Biome of Southeast of Brazil 

(Ab’Sáber, 1967; Schaefer, 2012). The “sugar loaf” model, also known as Bornhardt, is typical 

and found in large concentrations in this region, mainly in the state of Espírito Santo, Rio de 

Janeiro, Northeast Minas Gerais and South Bahia (Paula et al., 2016). 

Plant communities in Inselbergs are functionally ignored, and more research is needed 

to enhance knowledge about species distribution and selection of representative sites for 

conservation measures (Paula et al., 2016). Geomorphological features in semi-arid Inselbergs, 

especially on the region of Milagres (Bahia), are still poorly studied (Rios, 2017). In Northeast 

of Minas Gerais, these rocky outcrops are home to the last remnants of forest fragments in their 

surroundings, due to the difficulty of access, forming important forest fragments (Paula et al., 

2017). The entire region is representative of Inselbergs, and needs scientific attention due to the 

large gap in biological, geomorphological and geospatial investigations (Oliveira-Filho et al., 

2005). In the study area, there are still no conservation units representative of these 

environments to ensure the protection of natural resources (Paula et al., 2017), especially the 

conservation of the last remnants of Atlantic Forest and Caatinga Forest in the vicinity of rock 

outcrops. 

Environmental mapping and land cover monitoring for conservation purposes are one 

of the main applications of Earth observation satellite sensor data (Galiano et al., 2012). For 

this, a variety of classification methods have been used (Galiano et al., 2012). Satellite image 

classification techniques can be performed with unsupervised algorithms, such as K-means or 

ISODATA, supervised parametric algorithms, such as Maximum Likelihood – ML (Jensen, 

2005) and various alternative machine learning algorithms, such as Support Vector Machines 

(SVM) (Cortes and Vapnik, 1995; Mountrakis et al., 2011), Random Forest – RF (Breiman, 

2001), Gradiente Boosting Machine – GBM (Friedman, 2001a), C5.0 (Quinlan, 2004), KKNN 

(Hechenbichle and Schliep, 2004), Artificial neural networks (Mas and Flores, 2008) and 
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avNNet (B.D. Ripley, 1996) which are used in different areas of scientific knowledge, from 

spatial modeling research to tropical or temperate soils (Adhikari et al., 2013; Bonfatti et al., 

2016; Gomes et al., 2019; Ließ et al., 2016), texture modeling and apparent density of soils 

(Adhikari et al., 2013), soil classification (Brungard et al., 2015), up to slope stability 

assessment studies (Zhou et al., 2019) and landslide susceptibility mapping (Huang et al., 2020). 

  Machine learning approaches have become widely accepted, as evidenced by their use 

in mapping land cover and large areas (Huang et al., 2020; Maxwell et al., 2018). The use of 

these algorithms allows us to consider a wide variety of predictive covariates (Souza et al., 

2018). Studies show that these algorithms proved  to be superior to conventional parametric 

classifiers, for example, ML, by presenting greater precision and better performance in 

supervised classification, especially due to the efficiency in processing large databases 

(Gašparović and Jogun, 2018; Ghimire et al., 2012; Shi and Yang, 2016; Yu et al., 2014; 

Zeraatpisheh et al., 2017). Due to the excellent ability to deal with nonlinear relationships 

between dependent and independent variables (Voyant et al., 2017), the machine learning 

algorithms employed in the supervised classification of satellite images proposed in this 

research are efficient and capable of modeling spectral signatures of different classes of land 

use and coverage (Emadi et al., 2020; Maxwell et al., 2018).  

Given the environmental, cultural and social relevance of the typical landscapes of 

Inselbergs in Minas Gerais and Bahia, associated with improvements in satellite imaging 

technology, it is now possible to carry out mappings of large areas, in a more accurate and 

systematic way (Friedl et al., 1999; Shendryk et al., 2019) for the purpose of protecting and 

conserving strategic natural resource for global biodiversity. 

Given the above, the general objective of this study was to map the Inselbergs on the 

Brazilian Atlantic façade, along a climatic gradient. Specifically, we aim to: i) predict and 

spatialize Inselbergs using machine learning algorithms with remote sensor data; ii) select the 

most assertive model in the prediction of the Inselbergs; and iii) select the environmental 

covariates by importance for each algorithm. Final maps were also generated, from the results 

found in the classification for the best final agreement algorithm with the Sentinel-2 / MSI 

image for the entire study area. 
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2. Material and Methods  

2.1. Physical and natural aspects of the study area 
The climatic gradient of the study area is located between latitudes 9°35'0”S and 

20°18'20”S and longitudes 43°17'30”W and 37°55'50”W, at Minas Gerais state (Jequitinhonha 

Valley, Mucuri Valley and Rio Doce Valley), Espírito Santo (West) and Bahia states (Center 

North and Center South), Brazil (Fig. 1). Six square grids with 50km x 50km each were 

selected, arranged in a south-north gradient (wet-dry), totaling 15,000 km² of research. The 

average elevation between the grid ranges from 130 meters in the Boa União grid to 1235 m in 

the Jacinto grid. 

According to the Köppen-Geiger climate classification, the predominant climates in the 

grid a vary from Aw: hot and humid tropical, with rainy season in summer and dry season in 

winter, to BSh: humid semi-arid climate. The average annual precipitation is 912 mm, with a 

maximum of 1255 mm (Jacinto - Minas Gerais) and a minimum of 504 mm (Milagres - Bahia), 

distributed between the months of November to April and followed by a long period of drought 

(Jémisson Mattos dos Santos, 2010). The average annual temperature is 22.66 °C, with a 

maximum of 24.67 °C and a minimum of 19 °C. The studied area is under the domain of the 

Atlantic Forest and Caatinga biome (Fig. 1). 
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Fig. 1. Map of the study area with bioclimatic variables annual precipitation, average annual 
temperature, climatic and phytogeographic domains. 

2.2. Geology 
 
The Atlantic Forest Coastal zone, dissected by rivers that drain directly into the Atlantic 

Ocean, has several residual granitic nuclei dotting the landscape, represented by sugar-loaf 

forms and Inselbergs. They are true witnesses of drier paleoclimates, when erosive mechanisms 

exhumed the resistant granitic, exposing them as residual mountains (Schaefer, 2012). On the 

other hand, in the northeastern landscape - semi-arid climates, these resistant granite mountains-

islands show a heritage of wetter paleoclimates (Bigarella and Andrade, 1964), revealed by the 

presence of deeps Oxisols on some flat tops (Schaefer, 2012). 
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2.3. Inselbergs modeling and prediction methodology  
 
2.3.1. General Settings 
The modeling of Inselbergs was carried out using machine learning (ML) resources. 

The methodological framework includes techniques for selecting covariates by correlation and 

importance (Fig. 2). The methodology also includes statistical methods to optimize the result 

of determining uncertainty of the prediction of the Inselbergs. 
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Fig. 2. Methodological flowchart of data processing. 

2.4. Spatial database 
2.4.1. Images Sentinel-2/MSI  
Twelve 100x100 km² orthoimages were used for the first semester of 2019 of the 

multispectral sensor (Multispectral Instrument - MSI), installed on board the Sentinel-2 

Satellite and produced by the European Space Agency (ESA) (Table 1). For the Milagres grid, 

4 images were mosaicized and for the remaining grid 2 images. Sentinel-2/MSI has 13 spectral 

bands, of high and medium spatial resolution (four 10 m bands, six 20 m bands and three 60 m 

bands) and radiometric resolution of 12 bits per pixel (ESA, 2019). In the resampling of pixels, 

bands 2, 3, 4, 8 were used, with 10m resolution and bands 5, 6, 7, 8A, 11 and 12 of 20m of 

spatial resolution for a 12.5m grid. The objective was to make all bands compatible in the same 

spatial resolution and make them compatible with the MDE. It is worth noting that resampling 

does not interfere with image quality (Reis et al., 2019). 

    Band number  Central wavelength Bandwidth Previous order New order 
2 - Blue  492.4 nm 66 nm 2 1 
3 - Green  559.8 nm 36 nm  3 2 
4 - Red 664.6 nm 31 nm  4 3 
5 - Red Edge 1  704.1 nm 15 nm 5 4 
6 - Red Edge 2  740.5 nm 15 nm 6 5 
7 - Red Edge 3 782.8 nm 20 nm 7 6 
8 - Near Infra-Red 832,8 nm 106 nm 8 7 
8A - Red Edge 4  864.7 nm 21 nm 8A 8 
11 - Short Wave Infra-Red 
(SWIR-1)  

 
1613.7 nm 

 
91 nm 11 9 

12 - Short Wave Infra-Red 
(SWIR-2) 2202.4 nm 175 nm 12 10 
Table 1  
Spectral bands for the SENTINEL-2A/MSI sensor. 

Using the QGIS Software, after the resampling process to the 12.5m resolution, the 

bands were stacked - Layer Stacking (Accumulated Layer) to a single GEOTIFF file. Then the 

images were cut into 50 km x 50 km squares referring to study areas, using the ArcGIS 10.3.1 

Software. The same clipping procedure was performed for the scenes of the MDE.  
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2.4.2. Images ALOS PALSAR 
Eighteen scenes of the Digital Elevation Model - MDE ALOS PALSAR, four scenes 

for the Milagres, Hyacinth, Blue Stone and two scenes for the Novo Oriente and Ouro Verde 

squares were used, all with 12.5 m of spatial resolution. PALSAR is a synthetic aperture radar 

that operates in the L Band, obtains day or night images of the Earth's surface regardless of 

weather conditions and generates radiometrically corrected terrain products (RTC), that is, it 

corrects the geometry and radiometry of the opening radar synthetic to produce a superior 

product for scientific applications (Jaxa, 2020; Sena et al., 2020). 

2.5. Separation of bands and generation of spectral indices 
From the Sentinel-2/MSI images, 14 spectral covariables were generated for each study 

region. The spectral covariates were obtained using Sentinel-2 / MSI images in the transition 

from the rainy to the dry period, between March and July. The separate bands of interest were: 

BLUE, GREEN, RED, NIR, SWIR 1, SWIR 2. In the ENVI 5.0 Software, spectral indices were 

calculated NDVI - Normalized Difference Vegetation Index, SAVI - Soil Adjusted Vegetation 

Index, OSAVI - Optimized Soil Adjusted Vegetation Index, RENDVI - Red Edge Normalized 

Difference Vegetation Index, CMR - Clay Minerals Ratio, FMR - Ferrous Minerals Ratio, 

GNDVI - Green Normalized Difference Vegetation Index e MNDWI - Modified Normalized 

Difference Water Index.  

2.6. Generation of topographic covariates 
The generation of topographic covariates was performed in Software R (v 3.5.3), using 

the interface with the RSAGA package (Brenning, 2008). In the R environment, the MDE was 

used to generate 48 topographic covariates (morphometric maps), including the MDE itself for 

stacking. Maps include aspect, curvatures, hills, valleys and other information on the 

topography of the terrain (Gomes et al., 2019; Olaya and Conrad, 2009). After stacking the 

covariates, that is, the concatenation of several raster units in a single raster, data extraction was 

performed to separate and select the Inselbergs (Table 2) 

    Spectral and topographic variables Brief Description 
Band 1     Blue 
Band 2 
Band 3 
Band 7 
Band 9 

  Band 10 
Savi 
Ndvi 

 Osavi 
 Rendvi 

Cm 

Green 
Red 

Near Infra-Red 
Short Wave Infra-Red (SWIR-1) 

    Short Wave Infra-Red (SWIR-2) 
Soil Adjusted Vegetation Index 

Normalized Difference Vegetation Index 
Optimized Soil Adjusted Vegetation Index 

Red Edge Normalized Difference Vegetation Index 
Clay Minerals 
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Fmr 
 Gndvi 
Mndwi 

Ferrous Minerals Ratio 
Green Normalized Difference Vegetation Index 
Modified Normalized Difference Water Index 

Aspect Slope orientation 
Convergence Index Convergence Index 

Cross Sectional Curvature Transverse Curvature 
Curvature classification Curvature classification 

Difference Difference in hydrological gradient 
Diffuse Solar Radiation (January) Diffuse January radiation 

Diffuse Solar Radiation (June) June diffuse radiation 
Digital Elevation Model Digital elevation model 

Direct Solar Radiation (January) January direct radiation 
Direct Solar Radiation (June) June direct radiation 
Diurnal Anisotropic Heating Anisotropic daytime heating 

Easterness Sine of the slope orientation 
Flow Line Curvature Flow line curvature 
General Curvature General curvature 

Gradient Hydrological gradient 
Hill Hills 

Hill Index Hill index 
Landforms Relief Shapes 

Longitudinal Curvature Longitudinal curvature 
Mass Balance Index Balance index between erosion and deposition 
Maximal Curvature Maximum curvature 
Mid-Slope Position Medium tilt position 
Minimal Curvature Minimum curvature 

Morphometric Protection Index Protection index of a point in relation to the surrounding relief 
Multiresolution Index of Ridge Top Flatness Index that identifies flat areas with high attitudes 

Multiresolution Index of Valley bottom Flatness Multiresolution index of lower valley leveling 

Normalized Height 
Vertical distance between the base and the summit of the 

normalized slope 
Northerness Slope orientation cosine 

Planar Curvature Planar curvature 
Profile Curvature Profile curvature 
Real Surface Area Actual cell area calculation 

Slope Declivity 
Slope Height Vertical distance between the base and the summit of the slope 
Slope Index Slope index 

Standardized Height Slope between the base and the summit of the standard slope 
Surface Specific Points Quantitative land surface points 
Tangencial Curvature Tangential curvature 

Terrain Ruggedness Index Quantitative topography roughness index 
Terrain Surface Convexity Surface terrain convexity 

Topographic Position Index 
Vertical difference between the base and the summit of the 

standardized slope 
Topographic Wetness Index Topographic control index in hydrological processes 

Total Curvature Total curvature 
Total Solar Radiation (January) January total solar radiation 

Total Solar Radiation (June) June total solar radiation 
Valley Valley 

Valley Depth Valley depth calculated by vertical distance at hydrographic level 
Valley Index Hills elevation index based on Valley Depth 

Vector Ruggedness Measure Measurement of the variation in the roughness of the slope terrain 

Table 2  
Group of topographic and spectral covariates selected to predict Inselbergs. 
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2.7. Sample collections 
One thousand two hundred and seventy-eight sampling points were collected with their 

respective geographical coordinates for the different classes of land use and land cover in the 

Google Earth Pro computational application. At the end of this step, 424 points were separated 

for the Inselbergs usage class and categorized as 1. The remaining 854 points, referring to the 

other classes of land use and coverage, were designated as agriculture, forestry, mining, urban 

area, pasture, native forest, exposed soil and water bodies. These were categorized as 0 in the 

classification process by machine learning algorithms. 

2.8. Selection of covariates 
Processes for selecting covariates are necessary to reduce the computational cost, 

remove noisy/redundant predictors and increase the model's parsimony (Muñoz-Romero et al., 

2020; Seasholtz and Kowalski, 1993; Zhang et al., 2020). Using this precept, the covariate 

selection process was carried out in three steps: 1) removal of covariables with variance close 

to zero; 2) removal by correlation; and 3) removal by importance. 

2.8.1. Removing covariates with variance close to zero 
Nesta etapa foi feita a retirada das covariáveis que apresentaram variância próxima a 

zero. Covariáveis que apresentam variância nula ou próxima a zero, não trazem ganhos de 

performance na modelagem, podendo ser eliminadas. Todas covariáveis numéricas foram 

avaliadas pela função “nearZeroVar” do pacote Caret (Kuhn, 2019).  As covariáveis que 

passaram por esta fase foram para segunda fase de remoção por correlação. Nesta fase nenhuma 

covariável foi eliminada. 

2.8.2. Removal of covariates by correlation 
In the second step, correlation removal was performed, and Pearson's correlation was 

calculated for all numerical covariates. The covariables that presented a correlation greater than 

or equal to 95% were evaluated in pairs, with the removal of the covariate that had the highest 

value of the sum of the absolute correlations of the other covariates that entered the entry in the 

removal phase by correlation. Five topographic covariates were removed: 

terrain_ruggedness_index, solrad_total1, curv_cross_secational, solrad_total2 and 

solrad_ration2 and five spectral variables: GREEN, SWIR2, NDVI, OSAVI E GNDVI. The 

“findCorrelation” function of the Caret package (Kuhn, 2019) was applied at this stage and the 

remaining covariates from this process were stacked, together with the categorical covariates. 

The samples were separated into 75% for training and 25% for validation (hold-out). The 

training group was applied in the third selection phase. 
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2.8.3. Removing covariates by importance 
In this phase, the Recursive Feature Elimination - RFE technique contained in the Caret 

package (Kuhn, 2019) was applied. The RFE is a backforward selection method that 

automatically reduces the number of covariates, based on the importance of the covariates to 

predict the studied natural phenomenon (Kuhn and Johnson, 2013a). The results generated in 

the RFE are specific to each algorithm, requiring the application of this technique for each 

algorithm you want to test. The RFE was performed using as a base the set of covariables that 

remained from the selection process by correlation and tested at least fourteen subsets 5,6,7 ..., 

13,14,15, 20 and 35 covariables and the total number of covariables. The optimization of 

subsets of ideal covariates was based on repeated cross-validation (repeatedcv) with 10 folds, 

10 repetitions and 5 values of each of the internal hyperparameters of each tested algorithm 

(tuneLenght). The hyperparameters for each algorithm are described in the Caret package 

manual in chapter 6 (“Models described”), available at https://topepo.github.io/caret/train-

models-by-tag.html. The metric of to choose the best subset for each model was Kappa.  

2.9. Algorithms 
Six algorithms were tested: Model Averaged Neural Network – avNNet (B. D. Ripley, 

1996), C5.0 (Quinlan, 2004), Gradient Boosting Machine – GBM (Friedman, 2001b), Random 

Forest – RF (Breiman, 2001), k-Nearest Neighbors – KKNN (Schliep et al., 2016) e Support 

Vector Machines com Radial Basis Function Kernel – SVMRadialSigma (Cortes and Vapnik, 

1995). These algorithms cover a large part of the families of algorithms used in prediction in 

surveys using a large bank of remote sensing covariates. 

2.10. Inselberg training and prediction 
Model training was done using the ideal subset in the importance selection phase (RFE). 

The optimization of the internal parameters of the models in the training was done using 

repeated cross validation (repeatedcv) with 10 folds, 10 repetitions and 5 values of each of the 

internal hyperparameters of each tested algorithm (tuneLength). 

To evaluate the performance of the algorithms, the confusion matrix was used to derive 

the Kappa (k) Eq. (1) and Accuracy Eq. (2) índices (Congalton, 1991) and the precision of the 

presence-absence predictions was measured using the statistics: Eq. sensitivity (3) and Eq. 

specificity (4). Jacob Cohen, in 1960, proposed kappa statistics as a measure of agreement 

between evaluators on categorical variables (Hazra and Gogtay, 2017a). The kappa coefficient 

provides the numerical classification and depicts the degree of agreement of the data between 

the detection result and the basic referential truth (Morales et al., 2018). The k value ranges 
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from poor (< 0) to almost perfect (0.8 < K ≤ 1.0) (Landis and Koch, 1977) (Table 3). The 

calculated accuracy or global accuracy index indicates the probability that the studied and 

classified classes correspond to the true data, also presenting values ranging from 0 to 1, 

according to the aforementioned k values. 

The sensitivity assessment metric is equivalent to producer precision, commonly used 

in the remote sensing literature and represents the percentage of positive observations correctly 

predicted, whereas specificity is the percentage of negative observations correctly predicted 

(Tatem et al., 2003) in the prediction of the Inselbergs. 

Kappa statistic Strength of agreement 
< 0 Poor 
0 - 0.2 Slight 
0.2 - 0.4 Fair 
0.4 - 0.6 Moderate 
0.6 - 0.8 Substantial 
0.8 - 1 Almost Perfect 

Table 3  
Guidelines of Landis and Koch, 1977. 

 k = ݊ ∑ ݊��ci=ଵ −  ∑  ݊�+ + ݊+���=ଵ݊ଶ −  ∑ ݊���=ଵ + ݊+�                                                               ሺͳሻ 
Where: k = Kappa estimate; nii = line value i and column i (observed agreement); n i + = 

the sum of the line i; n + i = column sum i the confusion matrix (product of the marginals, the 

expected agreement being); n = total number of samples; and C = total number of classes.  

ݕܿܽݎݑܿܿ� =  ∑ ݊ �ݔ  ͳͲͲ                                                                             ሺʹሻ ݔ 
 Accuracy is the global accuracy, in which: xi = the sum of all elements on the diagonal 

of the confusion matrix; and n = total number of samples. 

ݕݐ�݈�ܾ�ݏ݊݁ܵ =  ܶ�ܶ� +  ��                                                                            ሺ͵ሻ 

Where: TP = number of true positives; FN = false negatives; and TP + FN = number of 

all positives in the supervised classification. 

ݕݐ�ܿ�݂�ܿ݁݌ܵ =  ܶ�ܶ� +  ��                                                                               ሺͶሻ 

In which: TN = number of true negatives; FP = false positives; and TN + FP = number 

of all negatives in the supervised classification. 
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  The final maps for the best models were evaluated on their prediction and estimation 

accuracy for the Inselbergs in the study area. The maps have more weight when choosing the 

model with better performance. At the end of the training, the predicted maps for each model 

were generated in the respective work squares.  

2.11. Maps and final results 
The process of selecting variables in the third phase, training and map prediction was 

repeated 100 times with different training and validation samples. This process is important to 

assess the variability of the prediction, since these subsets must generate different results and, 

consequently, performance for each model (Kuhn and Johnson, 2013b). The final results of the 

performance were calculated by means of the 100 rounds. The final maps were made by 

calculating the mode of the 100 rounds for each pixel of the six study areas. It is worth noting 

that mode is a measure of position that indicates the region of maximum frequencies in a given 

set of values (Neto, 2002).  

For the study of the uncertainty of the prediction of the Inselbergs by the models, the 

prediction accuracy map was also calculated. The prediction accuracy map shows the pixels 

where the model has always chosen the same class in the pixel every 100 times the model has 

been run. This map demonstrates the ability to visualize the uncertainties of the classification, 

showing the capacity for accuracy and precision in the prediction of the algorithms.  

The Kruskal-Wallis non-parametric test was also applied to the evaluation metrics: 

kappa index and accuracy. Models and repetitions of 100 times that the models were run with 

different samples of training and testing were considered as parameters. With the best methods 

defined statistically, the results of the maps will be evaluated, verifying with the spatialization 

more consistent with the reality of the phenomenon of spatialization of the Inselbergs for the 

study area. 

2.12. Assertiveness Index of Algorithms - IAA 
The IAA Eq. (5) was calculated to assess the assertiveness of the best performing 

algorithms in the prediction metrics, along a wet to dry climate gradient. 

��� = ݈ܽݐ݋ݐ�݋݈݁݀݋݉�   ͳͲͲ                                                                                 ሺͷሻ ݔ  

Where: Amodelo = Area found by the machine learning algorithm; and Atotal = Total 

area of the reference Inselbergs in the analyzed grid. 
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3. Results 

3.1. Covariables selected by RFE for each algorithm 
The contribution of the selected topographic and spectral covariates to the mapping and 

spatialization of the Inselbergs varied according to each machine learning algorithm, as shown 

in Fig. 3.   

The svmRadialSigma and GBM algorithms selected the least number of predictive 

covariates in the selection of importance among the analyzed algorithms. Using as reference 

the number of eight most important covariates selected by the RFE, the topographic covariates 

terrain_suface_texture, terrain_surface_convexity, hill, slope_height and the spectral covariate 

ferrous minerals ratio were selected by at least 3 different algorithms among the most important 

variables (Fig. 3). The topographic covariate Hill was important in all the algorithms analyzed 

in the classification of the Inselbergs: GBM - 64.91%; avNNet - 100%; C5.0 - 100%; RF - 

100%; KKNN - 91.29% and svmRadialSigma - 44.62%. Another multiselect covariate was the 

Ferrous Minerals Ratio, a spectral covariate, selected as important by 5 algorithms among the 

6 analyzed: C5.0 - 100%, RF - 43.30%, avNNet - 21.13% and svmRadialSigma - 7.18% GBM 

- 0.61% (Fig. 3). 
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Fig. 3. Metrics of importance of covariates for the main random predictors of the studied 
algorithms. The x-axis denotes the importance of the variable in percentage. The y-axis denotes 
the unique identifier for each selected covariate. 
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3.2. Evaluation of Inselberg mapping with machine learning algorithms 
The analyzed algorithms for the classification of Inselbergs showed accuracy values 

ranging from 0.89 to 0.96 and kappa index, 0.76 to 0.90 (Table 4; Fig. 4). In general, 

svmRadialSigma and GBM showed the best performances, with kappa of 0.90 and 0.88, 

respectively. The kknn and avNNet algorithms showed the lowest performance for the data set 

used, the results are shown in Table 4 and Fig. 4.  

According to the Kruskal-Wallis test performed for the evaluation metrics, the tested 

algorithms showed statistically significant differences in the final results (Fig. 4). The 

prediction statistics did not show overfitting, since the difference between the training and 

validation sets for accuracy and kappa index were close to zero (Table 4). This shows that the 

training and prediction samples showed an adequate number for the mapping. Our samples were 

well sampled and the MDE and the bands determined the Inselbergs well. 

 
Model Kappa training Kappa validation Overfitting 
KKNN 0,8101 0,8047 -0,0054 
Random Forest 0,8801 0,8668 -0,0133 
AvNNet 0,7850 0,7615 -0,0235 
C5.0 0,8939 0,8781 -0,0158 
Gradiente Boosting Machine 0,8931 0,8791 -0,0140 
svmRadialSigma   0,9064 0,9036 0,0028 

 Accuracy training Accuracy validation Overfitting 
KKNN 0,9149 0,9125 -0,0024 
Random Forest 0,9447 0,9388 -0,0059 
AvNNet 0,9017 0,8910 -0,0107 
C5.0 0,9515 0,9443 -0,0072 
Gradiente Boosting Machine 0,9512 0,9449 -0,0063 
svmRadialSigma 0,9572 0,9560 -0,0012 

 Sensitivity mean Specificity mean   
KKNN 0,9549 0,8351   
Random Forest 0,9460 0,9255   
AvNNet 0,9159 0,8455   

C5.0 0,9578 0,9147   

Gradiente Boosting Machine 0,8628 0,8443   

svmRadialSigma 0,9860 0,9339  

Table 4  
Kappa index values, accuracy, overfitting, average sensitivity and average specificity for the 
machine learning models analyzed. 
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Fig. 4. Validation metrics of prediction, accuracy and kappa index plotted for the respective 
analyzed algorithms. 

All models analyzed produced specificities and sensitivities greater than 80%, that is, 

they showed a high capacity to avoid false negatives and positives, respectively. The 

svmRadialSigma algorithm showed higher mean sensitivity and specificity. GBM had the 

lowest sensitivity and the kknn model the lowest specificity value (Table 4).  

          It is possible to notice in Fig. 5 that the KKNN and avNNet algorithms presented larger 

box size and line length, indicating that the classification process varied much in these 

algorithms. In the C5.0 algorithm, a more uniform classification is noted, that is, less variation 

occurred during the classification of the Sentinel-2/MSI image in this algorithm. A small and 

less accentuated shift is observed between the median lines in the four best classifiers shown in 

Fig. 5.  
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Fig 5. Violinsplot Chart for Accuracy and Kappa Index. 

The AvNNet presented four very good classifications (Fig. 5), but the performance was 

not superior to the svmRadialSigma and GBM algorithms, which showed a very good 

classification peak compared to the other algorithms. Random Forest had four bad ratings, but 

its worst rating was not lower than that found for the avNNet algorithm, which had the lowest 

performance among the algorithms analyzed by the kappa index and accuracy and statistical 

analysis. Analyzing the outliers of each algorithm (Fig. 5), all classifiers present at least one 

bad classification as outlier. 

A normal distribution trend was observed for the data shown in Fig. 5. SvmRadialSigma 

has a more stable prediction, closer to the mean and mode, while avNNet showed more 

instability in the prediction, followed by kknn, both had the lowest precision. SvmRadialSigma 

showed the highest accuracy and GBM, C5.0 and RF showed no statistical difference, being 

the second best accuracy and kappa index found. 

3.3. Final maps and prediction accuracy 
In general, machine learning algorithms showed good identification and spatialization 

of inselbergs. To visualize the prediction results, from the final maps, the best performance 

algorithms in the mapping were selected: GBM, svmRadialSigma, C5.0 and Random Forest for 

the Ouro Verde (Fig. 6), Milagres (Fig. 7) and Jacinto (Fig. 8) boxes. 
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Fig. 6. Maps generated by the best performance GBM, SVM, C5.0 and RF classifiers for 
Ouro Verde grid in Minas Gerais, Brazil. 
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Fig. 7. Maps generated by the GBM, svmRadialSigma, C5.0 and RF classifiers with the best 
performance for Milagres grid in Bahia, Brazil. 

 



29 
 

 

 

Fig. 8. Maps generated by the best performance GBM, SVM, C5.0 and RF classifiers for 
Jacinto grid in Minas Gerais and Bahia, Brazil. 

The final map of C5.0 had greater agreement in spatialization with the GBM algorithm, 

but it showed less differentiation between the polygons of Inselbergs (Figs. 6, 7 and 8). The RF 

generalized a little more and approached the Inselbergs' differentiating behavior found by 

svmRadialSigma.  

Between the svmRadialSigma and GBM algorithms, the GBM was worse in 

identification. The intervals of changing accuracy of the prediction are shown in green (Fig. 9). 

In svmRadialSigma the spatialization of Inselbergs (green tone) indicates less dispersion in 

spatialization. C5.0 showed higher final agreement of accuracy with the GBM model. The 

svmRadialSigma model made less errors in prediction. The C5.0 and RF showed intermediate 

performance between GBM and svmRadialSigma in the spatialization of Inselbergs. 
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Fig. 9. Final map of the prediction accuracy of GBM, svmRadialSigma, C5.0 and RF 
algorithms for the grid: a) Boa União; b) Novo Oriente - Minas Gerais; and c) Pedra Azul, 
Brazil. 
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The final maps generated by the GBM algorithm were more accurate compared to 

svmRadialSigma. Also, the GBM, presented lower final precision in the mapping result, 

indicated by greater green spots in the final maps of the prediction accuracy (Figs. 9 and 10). 

Among the analyzed algorithms, svmRadialSigma showed less dispersion in the mapping of 

Inselbergs, indicating better precision. For better understanding of the reader, the GBM and 

svmradialSigma algorithms were selected to show the final results and their overlap (Fig. 11). 

 

Fig. 10. Final prediction accuracy map and final map for the Boa União grid: a) GBM b) 
svmRadialSigma. 
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Fig. 11. Final map superimposed on the prediction accuracy map for the GBM and SVM 
algorithms: a) Boa União b) Novo Oriente and c) Pedra Azul, Brazil. 

3.4. Final maps of the GBM algorithm 
Based on the results obtained by statistical analysis and the final maps of modes and 

Inselbergs, the GBM algorithm was selected to demonstrate the final maps for the entire study 

area. In total 3612 Inselbergs were mapped by the GBM: Milagres (440), Pedra Azul (626), 

Jacinto (982), Novo Oriente (343), Ouro Verde (460) and Boa União (761).   
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Fig. 12. Final maps of the Inselbergs mapped by the GBM algorithm for all the studied 
squares. 

 

3.5. Algorithm Assertiveness Index – IAA 
 The values found for the Algorithm Assertiveness Index are shown in Table 5. 

  IAA (%)  
Grid GBM svmRadialSigma 

Milagres 21,78 33,70 
Pedra Azul 23,15 14,92 

Jacinto 43,21 37,27 
Novo Oriente 49,88 27,75 
Ouro Verde 57,02 30,17 
Boa União 58,36 38,23 

Table 5  
Assertiveness index for the algorithms analyzed in the prediction of the Inselbergs. 
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4. Discussion 

4.1. Importance of selected covariates in the spatialization of Inselbergs 
The methodological structure of the research allowed to evaluate the machine learning 

models and the most important covariates for the classification of Inselbergs, as well as to 

determine the contribution of each covariate in the prediction by algorithm.  The covarables 

terrain_surface_texture, terrain_surface convexity, slope_height and hill selected by the RFE 

represented important geomorphometric parameters to distinguish the Inselbergs in the studied 

landscape (Fig. 3). 

The covariable terrain_surface_terrain captures the ridges and valleys, being able to 

differentiate the peaks that outline the distribution of the valleys in the MDE - ALOSPALSAR. 

This covariate is calculates the nested-means terrain classification, which is defined by both 

relief (Z) and spacing (X, Y), can be represented by such measures of spatial intricacy as 

drainage density and changes in sign of slope, aspect or curvature per unit area (Iwahashi and 

Pike, 2007; Mahmoudzadeh et al., 2020). The slope gradient and surface texture together are 

fundamental in automatic classification of steep topography, for example, typical Inselbergs 

landscapes, however, are unsuitable for discriminating between low relief features such as flood 

plains or river terraces, according to (Iwahashi and Pike, 2007). 

According to the results found in this research, terrain surface convexity was important 

to predict Inselbergs, as shown in Fig. 3. This covariate is calculated as the ratio of the number 

of cells having positive curvature to the number of all valid cells within the specified serch 

radius (Iwahashi and Pike, 2007).  Similar to the texture measure, the convexity is independent 

of the magnitude of the relief and identifies the shapes, the positive curvatures of the surface 

and / or the local convexity in the landscape, producing positive values in convex areas 

upwards, negative values in concave areas and zero in flat slopes (Iwahashi and Pike, 2007). In 

this sense, it can be inferred that the Inselbergs are classified as positive curvatures on the 

landscape surface, associated with the plains or can be interpreted as isolated pontoons 

associated with higher elevations.  

The slope_height covariate selected by the algorithms is defined as the vertical distance 

between the crest and the tip of a slope (Gökceoglu and Aksoy, 1996). As an important 

covariate, the height of the slope limits the size and spatial extent of the Inselbergs in the 

landscape. This covariate characterizes the height of the slope and assists in parameterizing the 

unevenness associated with the relief (Qiu et al., 2016). It must be considered that the slope of 

the slope and / or hill is another influential factor in the modeling processes of the surface and 
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appears in many automated methods for land classification, although the regional typologies of 

the land surface are built combining relief, inclination, spacing of resources and other 

derivatives of height and geographic location (Iwahashi and Pike, 2007). 

 The covariables terrain_surface_texture, terrain_surface_convexity and slope_heigh 

are in line with those suggested by (Iwahashi et al., 2001) and are used as diagnostic variables 

to differentiate relief classes, topographic targets, as well as to contrast stable slopes and 

escarpments. According to the selection of the RFE algorithm, they proved to be important in 

the process of spatialization and mapping of Inselbergs along a climate gradient. (Iwahashi and 

Kamiya, 1995) suggest these variables to create maps of land units. The concavity and 

convexity of the terrain surface are widely used to express topographic environments 

(Hutchinson and Gallant, 1999), so that the texture and local convexity resemble the attributes 

of the terrain, such as topographic profile or convexity of the plane (Iwahashi and Pike, 2007).  

Among the covariables selected a priori by the models using RFE (Gomes et al., 2019), 

the topographic covariate hill proved to be important in every study area to predict and spatialize 

the Inselbergs. All algorithms selected this covariate to detect the spatial variability of the 

Inselbergs in the landscape (Fig. 3). In this sense, the morphometric parameters of the terrestrial 

surface analyze and parameterize the shape of the surface, as well as, identify specific points 

on the surface and classify the terrain into ridges, slopes and channels (Olaya and Conrad, 

2009). 

The topographimetric covariates generated in Software R (v 3.5.3), from the interface 

with the RSAGA package (Brenning, 2008) represents a set of consistent algorithms for spatial 

analysis of Digital Elevation Models and spatialization of Inselbergs in different landscapes. 

The morphometric covariables such as slope, plain, curvature, solar radiation and topographic 

humidity index, also contributed in a different way to detect the Inselbergs in the studied 

landscape (Fig. 3). We highlight the need to extract primary and secondary morphometric 

attributes embedded in the Digital Elevation Models - MDE and use them to estimate the 

presence of Inselbergs.  

Of all the spectral covariates selected by the algorithms, the Ferrous Minerals Ratio - 

FMR index showed the greatest significant importance among the different spectral covariates 

that predict the Inselbergs (Fig. 3). The FMR is generated from the ratio between the Short 

Wave Infra-Red and Near Infra-Red bands. Spectral indices are often used to classify land use 

and land cover to help distinguish land use and land cover classes, especially between 

vegetation types (Abdi, 2020). According to (Rowan and Mars, 2003), band ratio images 
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illustrate specific characteristics of spectral absorption of minerals in rocks. It is worth noting 

that the number of Fe is preferable in almost all granitoids where ferrous and ferric iron analyzes 

are available, one exception is the classification of suites that show a wide range of Fe 3+ / 

Fe 2+ due to late subsolid oxidation (Frost et al., 2001). It has long been recognized that there 

are fundamental differences between rock suites that undergo iron enrichment during 

differentiation, while silica abundance remains low, and those that undergo silica enrichment 

with only minimal FeO enrichment compared to MgO (Nockolds and Allen, 1956).  

Generally, many minerals in the iron oxide group (hematite- Fe2O3, goethite - FeO 

(OH)), have a set of broad spectral absorption characteristics centered mainly in the regions of 

500 and 850 at 910 nm (VNIR and SWIR), while magnetite - Fe2O4 and ilmenite - FeTiO3 do 

not exhibit spectral features in the visible ranges (Formaggio et al., 1996; Mars, 2018). These 

considerations are more noticeable for hyperspectral images, in this sense, our results indicate 

that, what really acts in the differentiation of rocks and makes the FMR important in the 

prediction is water, mainly for multispectral images used in this research. Inselbergs, due to 

their large proportions of bare rock, reflect more in the shortwave infrared range, where there 

is less water, more reflectance and more water, less reflectance in the SWIR band. The biotite 

present in the composition of porphyritic granites, typical of the studied region, may also be 

acting. According to (Shabani and Lalonde, 2003), the composition of the main element of 

biotite can serve as a tool, among others, for the classification and characterization of granites, 

as well as, to understand its petrogenesis, but that none of these methods is infallible or must 

be used in isolation. 

 The Ferrous Minerals Ratio index can also be used to predict various chemical and 

physical characteristics of soils (Shepherd and Walsh, 2002). According to (Mathews et al., 

1973), knowledge of the mineralogical composition is essential to evaluate the spectral behavior 

of soils, due to the various absorption features and the influence on albedo. The observed results 

indicate that the mineralogical / mineral indexes can be used to separate areas with a high 

predominance of exposed soil and rocky outcrops in the supervised classification of images by 

machine learning algorithms. The use of Sentinel-2/MSI bands and the technique of dividing 

bands were fundamental to separate the Inselbergs and differentiate them in the process of 

distinguishing classes of land use and land cover.  
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4.2. Inselbergs precision performance by machine learning algorithms 
From the precision and performance metrics of the models, the results confirm the good 

performance / performance of the models effectively, above all, the Gradient Boosting Machine 

(GBM), proposed by (Friedman, 2001a). According to (Dixit et al., 2017), classification 

accuracy is the most important parameter for any classification algorithm. In this sense, the 

studied models were classified with substantial agreement - Substantial (0.61-0.80) to almost 

perfect - Almost Perfect (0.81-1.00) in the classification (Landis and Koch, 1977).  

By not overfitting, the results found of accuracy and kappa index of validation 

corroborate to confirm the good results in the mapping, demonstrated by the small differences 

found in the training samples and data validation (Table 4 and Fig. 4). The kappa coefficient is 

more demanding and provides a measure of the difference between the actual data, the reference 

data and the classifier used to perform the classification versus the likelihood of agreement 

between the reference data and a random classifier (Adam et al., 2014). 

Regarding the sensitivity and specificity measures used to assess the performance of 

supervised classification algorithms, the results indicate positive observations correctly 

predicted for Inselbergs, due to the high values of sensitivity and specificity found for the 

analyzed algorithms. In statistical practice, sensitivity is gained at the expense of specificity 

and vice versa (Hazra and Gogtay, 2017b). According to Table 4, it is possible to notice higher 

sensitivity values found for all analyzed algorithms, compared to specificity values. In short, 

sensitivity represented the percentage of positive observations correctly predicted and 

specificity, the percentage of negative observations correctly predicted for Inselbergs (Tatem 

et al., 2003). 

4.3. Precision accuracy maps and maps of Inselberg prediction 
The effectiveness of an automated analysis of the topography of DEMs can be assessed 

in several ways, including map overlay and statistical análisis (Iwahashi and Pike, 2007). The 

similarity in the values of accuracy, sensitivity and specificity between the algorithms used to 

map the Inselbergs showed the viability of the methodology for mapping the Inselbergs in 

tropical landscapes. Considering the focus on mapping and spatializing Inselbergs, GBM 

presented more accurate final maps in the real geolocation of Inselbergs in the field and 

Sentinel-2/MSI images. According to the results, the GBM erred more in the prediction 

attempts, however, in the final result it got more correct. The GBM better delimited the 

Inselbergs and their respective peaks (highest points of the rocky outcrops), compared to the 

other analyzed algorithms, mainly in relation to the SVMRadialSigma, which presented the 
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highest accuracy value and kappa index. It is possible to notice in Fig. 10 that more details 

about the shape of the Inselbergs are seen in the results of the GBM algorithm, even presenting 

a lower value in the kappa index and final accuracy compared to the SVM, as shown in Fig. 4.  

The results demonstrate the importance of rotating the models several times to obtain 

results closer to reality and we emphasize that the best model obtained and selected by the result 

of the validation metric does not always present the most accurate result in the final agreement 

of the maps, therefore, the importance of the use and final analysis of prediction accuracy maps, 

satellite images and, when possible, experts in the study topic to determine the best performance 

algorithm.  

The reasons for the mapping and conservation of Inselbergs in the Caatinga and Atlantic 

Forest Biomes include their high number of geographically restricted and threatened species 

that function as islands of terrestrial habitat (Bussell and James, 1997). In this sense, geospatial 

analysis, conservation measures and connection of the forest remnants of the Inselbegrs and the 

surrounding areas are of paramount importance for maintaining these environments threatened 

by anthropic pressure. 

It is worth mentioning that many inselbergs in the world are threatened by alarming 

rates of mining, invasion of exotic grasses, water collection, tourism and urbanization, which 

results in the loss of biodiversity and degradation of their ecosystem services (Paula et al., 2015; 

Porembski et al., 2016). The mapping and spatialization associated with the high precision and 

accuracy of the classification obtained in this research provide reliable information on the 

number and extent of the main Inselbergs in this region of Brazil, as well as, it can be used as 

a reference to plan ecosystem services, forest restoration and management environmental 

efficiency for granite Inselbergs rock fields over a climate gradient. 

It is worth mentioning that many Inselbergs in the world are threatened by alarming 

rates of mining, invasion of exotic grasses, water collection, tourism and urbanization, which 

results in the loss of biodiversity and degradation of their ecosystem services (Paula et al., 2015; 

Porembski et al., 2016). The spatialization of Inselbergs, associated with high precision and 

accuracy in the results of the classification obtained in this research, provide reliable 

approximate information on the number and spatial extent of the main Inselbergs in this region 

of Brazil under the climatic domain of the Atlantic Forest and Caatinga, as well as, this 

modeling can be used as a reference for planning ecosystem services, forest / ecological 

restoration and more assertive environmental management for granite Inselbergs rock fields. 
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4.4. Algorithm Assertiveness Index - IAA 
According to the results of the spatial assertiveness of the Inselbergs analyzed separately 

by grid (Table 5), there was a better performance of the GBM algorithm in the grid inserted in 

the climatic domain Aw, humid climate. The svmRadialSigma algorithm showed better 

performance in the Milagres/Bahia grid, inserted predominantly in the BSh domain, dry 

climate. The results found from the IAA corroborate to understand that the machine learning 

algorithms can present different performances along a climatic gradient, whether in the domain 

of the Atlantic Forest and/or the Caatinga. 

5. Conclusion 

The machine learning algorithms used had adequate performances in mapping 

inselbergs from Brazil, with a kappa index ranging from 0.80 to 0.87. The Sentinel-2/MSI 

images classified by the supervised machine learning algorithms GBM, SVM, C5.0 and RF 

showed consistent and reliable results in the mapping and modeling of Inselbergs and associates 

landscapes. 

The Model Gradient Boosting Machine - GBM presented the second best performance 

in the classification of the Inselbergs and the best agreement in the final maps. Machine learning 

algorithms can perform differently according to the climatic domain of the study area, whether 

it is predominantly wet or dry. 

The methodology used in this research has applicability to other global regions with 

similar of Inselbergs and landscapes. 
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