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RESUMO

SILVEIRA, Vitor Alves da, M.Sc., Universidade Federal de Vicosa, fE@rde 2021
Modelagem e mapeamento de inselbergs no dominio da Matd @&ntica e Caatinga, Brasil
Orientador: Alexandre Rosa dos Santos. Coorientador: Charleesto Gongalves Reynaud
Schaefer.

Os Inselbergs sdo afloramentos de rochas de proporcdetitinas, abrigando niveis altos de
diversidade de plantas e endemismo em diversas regidgsafigss do globo. No Brasil
encontra-se uma das maiores concentracfes de Inselbergdaneta, e pesquisas sdo
necessarias para evidenciar locais representativosqasarvacad\esse contexto, o presente
estudoavaliou o desempenho de algoritmos de aprendizado de magumapeamento de
Inselbergs. Especificamente, busampredizer e espacializar os Inselbergs usando algotitmos
selecionando covariaveis importantes na espacializdedses afloramentos rochosos em
gradiente climatico do dominio atlantico do Brasil. Aiéas de classificacdo de imagens,
algoritmos de aprendizado de maquina e modelagem geoedperialusadas para mapear a
distribuicdo dos Inselbergs e selecionar areas relevpatra conservacao ecologica e ambiental
desses ambientes ameacados por pressdes antropicas eanwtiaraticas. De acordo com os
resultados, os modelos estudados foram classificados coomwordancia substancial
Substantial (0,61-0,80) a quase perfeitéNmost Perfect (0,81-1,00) na classificacas O
algoritmos GBM, svmRadialSigma, C5.0 e RF apresentaramrmealbores resultados na
aproximacao da realidade no mapeamento das paisagens tipitaselbergs estudadas. A
metodologia utilizada neste estudo revela grande poterciasal para subsidiar decisdes de
selecdo de paisagens tipicas de Inselbergs no contexto dwss tata Atlantica e Caatinga
para protecdo e gestdo ambiental eficiente da biodiversidgdedivesidade. A metodologia

proposta pode ser adaptada a diferentes areas e biommsido, com sucesso.

Palavras-chave:Aprendizado de maquina. Geotecnologia. SensoriamentotBeRredicao.



ABSTRACT

SILVEIRA, Vitor Alves da, M.Sc., Universidade Federal dedéig February, 202IModeling
and mapping of Inselbergs in the domain of the Atlantic Forest andCaatinga, Brazil.
Advisor: Alexandre Rosa dos Sant@s-advisor: Carlos Ernesto Gongalves Reynaud Schaefer.

Inselbergs are outcrops of rocks of monolithic proportid@boring high levels of plant
diversity and endemism in various geographical regions oglittee. Brazil has one of the
largest concentrations of Inselbergs on the planat, r@search is needed to highlight
representative sites for conservatidn. this context, the present study evaluated the
performance of machine learning algorithms in Inselberg mapfipecifically, we sought to
predict and spatialize the Inselbergs using algorithms, tggeiportant covariates in the
spatialization of these rocky outcrops in the climgtiadient of the Atlantic domain of Brazil.
Image classification techniques, machine learning algorithmdsgaospatial modeling were
used to map the distribution of Inselbergs and select aedagant to ecological and
environmental conservation of these environments thredtley anthropogenic pressures and
climate change. According to the results, the studied modete classified with substantial
agreement - Substantial (0.61-0.80) to almost perfect - Almosed@€f£81-1.00) in the
classification. The GBM, svmRadialSigma, C5.0 and RF #lgos showed the best results in
approaching reality in mapping the typical Inselbergs landscsjelied. The methodology
used in this study reveals great potential for use to supposiales on the selection of typical
Inselberg landscapes in the context of the Atlantiestaand Caatinga biomes for the protection
and efficient environmental management of biodiversity gaddiversity. The proposed

methodology can be successfully adapted to different arehbiomes in the world.

Keywords: Machine Learning. Geotechnology. Remote Sensing. Pradictio
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1. Introduction

Brazil has one of the highest concentrations of Insg#bef the world and according to
Ab’Saber (2003) on the Atlantic facade, from humid to semi-arid, typinaelbergs landscapes
occur. These are preferably distributed to the north oPthealto da Borborema, in Quixada (
Ceard), Patos (Paraiba), Itatim (Bahia), Seridé redam Grande do Norte) and Pernambuco
(Jatoba, 1994; Maia et al., 2016; Maia and Nascimento, 2018; Ralggaé, 2019)

The largest and most significant areas of Inselbergdoasged along the Atlantic
Mobile Belt, whose main distribution area in the Atiarfrorest Biome of Southeast of Brazil
(Ab’Saber, 1967; Schaefer, 2012). The “sugar loaf” model, also known as Bornhardlt, is typical
and found in large concentrations in this region, mamlghe state of Espirito Santo, Rio de
Janeiro, Northeast Minas Gerais and South Bahia (Raala 2016).

Plant communities in Inselbergs are functionally ignored, more research is needed
to enhance knowledge about species distribution and selecfi representative sites for
conservation measures (Paula et al., 2016). Geomorpholéatates in semi-arid Inselbergs,
especially on the region of Milagres (Bahia), are stiifhostudied (Rios, 2017). In Northeast
of Minas Gerais, these rocky outcrops are home to theelastants of forest fragments in their
surroundings, due to the difficulty of access, forming impartarest fragments (Paula et al.,
2017). The entire region is representative of Inselbargkneeds scientific attention due to the
large gap in biological, geomorphological and geospatial figag®ns (Oliveira-Filho et al.,
2005). In the study area, there are still no conservatioibs representative of these
environments to ensure the protection of natural resoureeda(Bt al., 2017), especially the
conservation of the last remnants of Atlantic Foeest Caatinga Forest in the vicinity of rock
outcrops.

Environmental mapping and land cover monitoring for consemwgiurposes are one
of the main applications of Earth observation satefitesor data (Galiano et al., 2012). For
this, a variety of classification methods have been (Sadlano et al., 2012). Satellite image
classification technigues can be performed with unsuperaigedithms, such as K-means or
ISODATA, supervised parametric algorithms, such as Maximukelibiood — ML (Jensen,
2005) and various alternative machine learning algorithms, suSligport Vector Machines
(SVM) (Cortes and Vapnik, 1995; Mountrakis et al., 2011), Randoraske RF (Breiman,
2001), Gradiente Boosting Machireé5BM (Friedman, 2001a), C5.0 (Quinlan, 2004), KKNN
(Hechenbichle and Schliep, 2004tificial neural networks (Mas and Flores, 2008) and
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avNNet (B.D. Ripley, 1996) which are used in different axdascientific knowledge, from
spatial modeling research to tropical or temperate sodsikari et al., 2013; Bonfatti et al.,
2016; Gomes et al., 2019; Liel? et al., 2016), texture modeling andeapp@nsity of soils
(Adhikari et al., 2013), soil classification (Brungard et @&015), up to slope stability
assessment studies (Zhou et al., 2019) and landslide sbdtgpiapping (Huang et al., 2020).

Machine learning approaches have become widely accepteddaaced by their use
in mapping land cover and large areas (Huang et al., 2020; Maatwadl, 2018) The use of
these algorithms allows us to consider a wide varietygredlictive covariates (Souza et al.,
2018). Studies show that these algorithms proved to be supedonventional parametric
classifiers, for exampleML, by presenting greater precision and better performance in
supervised classification, especially due to the efficiemcypriocessing large databases
(Gasparovi¢ and Jogun, 2018; Ghimire et al., 2012; Shi and Yang, 2016; Yu et al., 2014,
Zeraatpisheh et al., 2017). Due to the excellent ability td with nonlinear relationships
between dependent and independent variables (Voyant et al.,, 204 Anhachine learning
algorithms employed in the supervised classification ¢élige images proposed in this
research are efficient and capable of modeling spectnadisires of different classes of land
use and coverage (Emadi et al., 2020; Maxwell et al., 2018).

Given the environmental, cultural and social relevanceheftypical landscapes of
Inselbergs in Minas Gerais and Bahia, associated with irapremts in satellite imaging
technology, it is now possible to carry out mappings ajdaareas, in a more accurate and
systematic way (Friedl| et al., 1999; Shendryk et al., 2019)ht® purpose of protecting and
conserving strategic natural resource for global biodiwersit

Given the above, the general objective of this studyteasap the Inselbergs on the
Brazilian Atlantic facade, along a climatic gradienpeS&ifically, we aim to: i) predict and
spatialize Inselbergs using machine learning algorithms witlotiee sensor data; ii) select the
most assertive model in the prediction of the Inselhemgd iii) select the environmental
covariates by importance for each algorithm. Final maps aiso generated, from the results
found in the classification for the best final agreemalgorithm with the Sentinel-2 / MSI

image for the entire study area.
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2. Material and Methods

2.1. Physical and natural aspects of the study area
The climatic gradient of the study area is located betwattudes9°35'0”S and

20°18'20”S and longitudes 43°17'30”W and 37°55'50”W, at Minas Gerais state (Jequitinhonha
Valley, Mucuri Valley and Rio Doce Valley), Espirito Santest) and Bahia states (Center
North and Center South), Brazil (Fig. 1). Six square gwit 50km x 50km each were
selected, arranged in a south-north gradient (wet-dry)jngta5,000 km%f research. The
average elevation between the grid ranges from 130 metérs Boa Unido grid to 1235 min
the Jacinto grid.

According to the Koppen-Geiger climate classificatios, ghedominant climates in the
grid a vary from Aw: hot and humid tropical, with rainy ssas: summer and dry season in
winter, to BSh: humid semi-arid climate. The average annuaipitiaion is 912 mm, with a
maximum of 1255 mm (Jacinto - Minas Gerais) and a minimum ofrf@4Milagres - Bahia),
distributed between the months of November to April aridviedd by a long period of drought
(Jémisson Mattos dos Santos, 2010). The average annyzregore is 22.66 °C, with a
maximum of 24.67 °C and a minimum of 19 °C. The studied areadsr the domain of the

Atlantic Forest and Caatinga biome (Fig. 1).
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Fig. 1. Map of the study area with bioclimatic variables annuatipitation, average annual
temperature, climatic and phytogeographic domains.

2.2.Geology

The Atlantic Forest Coastal zone, dissected by ritretsdrain directly into the Atlantic
Ocean, has several residual granitic nuclei dotting the lapelscapresented by sugar-loaf
forms and Inselbergs. They are true witnesses of drierqgiatedes, when erosive mechanisms
exhumed the resistant granitic, exposing them as residuaitains (Schaefer, 2012). On the
other hand, in the northeastern landscagmami-arid climates, these resistant granite mountains-
islands show a heritage of wetter paleoclimates (Bigaaeitl Andrade, 1964), revealed by the

presence of deeps Oxisols on some flat tops (Schaefer, 2012).
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2.3.Inselbergs modeling and prediction methodology

2.3.1. General Settings
The modeling of Inselbergs was carried out using machine leafiibpresources.

The methodological framework includes techniques for 8etgcovariates by correlation and
importance (Fig. 2). The methodology also includes $iailsnethods to optimize the result
of determining uncertainty of the prediction of the lbsggs.
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Fig. 2. Methodological flowchart of data processing.

2.4.Spatial database

2.4.1. Images Sentinel-2/MSI
Twelve 100x100 km? orthoimages were used for the first semebt2019 of the

multispectral sensor (Multispectral Instrument - MSI), insthlbn board the Sentin2l-
Satellite and produced by the European Space Agency (ESBIe(Tha For the Milagres grid,

4 images were mosaicized and for the remaining grid 2 imagetn&l-2/MSI has 13 spectral
bands, of high and medium spatial resolution (four 1@Gndb, six 20 m bands and three 60 m
bands) and radiometric resolution of 12 bits per pixeEX®19). In the resampling of pixels,
bands 2, 3, 4, 8 were used, with 10m resolution and bar@ls758A, 11 and 12 of 20m of
spatial resolution for a 12.5m grid. The objective was to ra#ikeands compatible in the same
spatial resolution and make them compatible with the MDi.worth noting that resampling

does not interfere with image quality (Reis et al., 2019).

Band number Central wavelength ~ Bandwidth  Previous order New order

2 - Blue 492.4 nm 66 nm 2 1
3 - Green 559.8 nm 36 nm 3 2
4 - Red 664.6 nm 31 nm 4 3
5- Red Edge 1 704.1 nm 15 nm 5 4
6 - Red Edge 2 740.5 nm 15 nm 6 5
7 - Red Edge 3 782.8 nm 20 nm 7 6
8 - Near Infra-Red 832,8 nm 106 nm 8 7
8A - Red Edge 4 864.7 nm 21 nm 8A 8
11 - Short Wave Infra-Red

(SWIR-1) 1613.7 nm 91 nm 11 9
12 - Short Wave Infra-Red

(SWIR-2) 2202.4 nm 175 nm 12 10

Table 1

Spectral bands for the SENTINEL-2A/MSI sensor.

Using the QGIS Software, after the resampling processetd2tbm resolution, the
bands were stacked - Layer Stacking (Accumulated Layersiogle GEOTIFF file. Then the
images were cut into 50 km x 50 km squares referring to study as#ag,the ArcGIS 10.3.1

Software. The same clipping procedure was performed for émesof the MDE.
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2.4.2. Images ALOS PALSAR
Eighteen scenes of the Digital Elevation Model - MDEQS. PALSAR, four scenes

for the Milagres, Hyacinth, Blue Stone and two scepeshfe Novo Oriente and Ouro Verde
squares were used, all with 12.5 m of spatial resolution. RRLIS a synthetic aperture radar
that operates in the L Band, obtains day or night imafeéise Earth's surface regardless of
weather conditions and generates radiometrically coddeteain products (RTC), that is, it
corrects the geometry and radiometry of the opening reglahetic to produce a superior

product for scientific applications (Jaxa, 2020; Sena et al., 2020)

2.5. Separation of bands and generation of spectral indices
From the Sentinel-2/MSI images, 14 spectral covariables gemerated for each study

region. The spectral covariates were obtained usingnget/ MSI images in the transition
from the rainy to the dry period, between March and Jihg. separate bands of interest were:
BLUE, GREEN, RED, NIR, SWIR 1, SWIR 2. In the ENVI 5.0 Softejaspectral indices were
calculated NDVI - Normalized Difference Vegetation Index, SAVI - Sdijuted Vegetation
Index, OSAVI - Optimized Soil Adjusted Vegetation Index, RENDVI - Red Edge Normalized
Difference Vegetation Index, CMR - Clay Minerals Ratio, FMR - Ferrduterals Ratio
GNDVI - Green Normalized Difference Vegetation Index e MNDWI - ModifiextiNalized

Difference Water Index

2.6. Generation of topographic covariates
The generation of topographic covariates was perform8adfinware R (v 3.5.3), using

the interface with the RSAGA package (Brenning, 2008). IrRtleavironment, the MDE was
used to genera#Btopographic covariates (morphometric maps), including the ht2# for
stacking. Maps include aspect, curvatures, hills, valleys athdr information on the
topography of the terrain (Gomes et al., 2019; Olaya anda@p2009). After stacking the
covariates, that is, the concatenation of severdmrasits in a single raster, data extraction was

performed to separate and select the Inselbergs (Table 2)

Spectral and topographic variables Brief Description
Band 1 Blue
Band 2 Green
Band 3 Red
Band 7 Near Infra-Red
Band 9 Short Wave Infra-Red (SWIR-1)
Band 10 Short Wave Infra-Red (SWIR-2)
Savi Soil Adjusted Vegetation Index
Ndvi Normalized Difference Vegetation Index
Osavi Optimized Soil Adjusted Vegetation Index
Rendvi Red Edge Normalized Difference Vegetation Index

Cm Clay Minerals



Fmr
Gndvi
Mndwi
Aspect
Convergence Index
Cross Sectional Curvature
Curvature classification
Difference
Diffuse Solar Radiation (January)
Diffuse Solar Radiation (June)
Digital Elevation Model
Direct Solar Radiation (January)
Direct Solar Radiation (June)
Diurnal Anisotropic Heating
Easterness
Flow Line Curvature
General Curvature
Gradient
Hill
Hill Index
Landforms
Longitudinal Curvature
Mass Balance Index
Maximal Curvature
Mid-Slope Position
Minimal Curvature
Morphometric Protection Index

Multiresolution Index of Ridge Top Flatness
Multiresolution Index of Valley bottom Flatness

Normalized Height

Northerness
Planar Curvature
Profile Curvature
Real Surface Area

Slope
Slope Height
Slope Index
Standardized Height
Surface Specific Points
Tangencial Curvature
Terrain Ruggedness Index
Terrain Surface Convexity

Topographic Position Index

Topographic Wetness Index
Total Curvature
Total Solar Radiation (January)
Total Solar Radiation (June)
Valley
Valley Depth
Valley Index
Vector Ruggedness Measure
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Ferrous Minerals Ratio
Green Normalized Difference Vegetation Index
Modified Normalized Difference Water Index
Slope orientation
Convergence Index
Transverse Curvature
Curvature classification
Difference in hydrological gradient
Diffuse January radiation
June diffuse radiation
Digital elevation model
January direct radiation
June direct radiation
Anisotropic daytime heating
Sine of the slope orientation
Flow line curvature
General curvature
Hydrological gradient
Hills
Hill index
Relief Shapes
Longitudinal curvature
Balance index between erosion and deposition
Maximum curvature
Medium tilt position
Minimum curvature
Protection index of a point in relation to the surroundaiigf

Index that identifies flat areas with high attitudes

Multiresolution index of lower valley leveling
Vertical distance between the base and the summit of the
normalized slope
Slope orientation cosine
Planar curvature
Profile curvature
Actual cell area calculation
Declivity
Vertical distance between the base and the summit ofdpe s
Slope index
Slope between the base and the summit of the standard slo
Quantitative land surface points
Tangential curvature
Quantitative topography roughness index
Surface terrain convexity
Vertical difference between the base and the summit of the
standardized slope
Topographic control index in hydrological processes
Total curvature
January total solar radiation
June total solar radiation
Valley

Valley depth calculated by vertical distance at hydrograehi

Hills elevation index based on Valley Depth
Measurement of the variation in the roughness of theedkrrain

Table 2

Group of topographic and spectral covariates selected to pheskdibergs.
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2.7. Sample collections
One thousand two hundred and seventy-eight sampling points ellected with their

respective geographical coordinates for the differensetasf land use and land cover in the
Google Earth Pro computational application. At the end of tags €24 points were separated
for the Inselbergs usage class and categorized as Yeiading 854 points, referring to the
other classes of land use and coverage, were designatgdcadture, forestry, mining, urban
area, pasture, native forest, exposed soil and watershddiese were categorized as O in the

classification process by machine learning algorithms.

2.8. Selection of covariates
Processes for selecting covariates are necessarydtceréhe computational cost,

remove noisy/redundant predictors and increase the modasimpay (Muiioz-Romero et al.,
2020; Seasholtz and Kowalski, 1993; Zhang et al., 2020). Usingrdiept, the covariate
selection process was carried out in three steps: 1)vedrmbcovariables with variance close

to zero; 2) removal by correlation; and 3) removal by impoea

2.8.1. Removing covariates with variance close to zero
Nesta etapa foi feita a retirada das covariaveis queeagsram variancia proxima a

zero. Covariaveis gue apresentam variancia nula ourpadai zero, nao trazem ganhos de
performance na modelagem, podendo ser eliminadas. Todasageis numéricas foram
avaliadas pela fung¢do “nearZeroVat do pacote Caret (Kuhn, 2019). As covariaveis que
passaram por esta fase foram para segunda fase de rggoocéoelacdo. Nesta fase nenhuma

covariavel foi eliminada.

2.8.2. Removal of covariates by correlation
In the second step, correlation removal was perfornmmdi P@arson's correlation was

calculated for all numerical covariates. The co\dea that presented a correlation greater than
or equal to 95% were evaluated in pairs, with the remofvide covariate that had the highest
value of the sum of the absolute correlations of theratbvariates that entered the entry in the
removal phase by correlation. Five topographic covariates e weemoved:
terrain_ruggedness_index, solrad _totall, curv_cross_secatiosalrad total2 and
solrad_ration2 and five spectral variables: GREEN, SWIR2, NDVI, @FAGNDVI. The
“findCorrelation” function of the Caret package (Kuhn, 2019) was applied at this stage and the
remaining covariates from this process were stacked, &meith the categorical covariates.
The samples were separated into 75% for training and 25% lidat@n (hold-out). The

training group was applied in the third selection phase.
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2.8.3. Removing covariates by importance
In this phase, the Recursive Feature Elimination - REEMque contained in the Caret

package (Kuhn, 2019) was applied. The RFE is a backforward iseletiethod that
automatically reduces the number of covariates, basedeoimportance of the covariates to
predict the studied natural phenomenon (Kuhn and Johnson, 20h@&ajesults generated in
the RFE are specific to each algorithm, requiring theiegmn of this technique for each
algorithm you want to test. The RFE was performed using aseatha set of covariables that
remained from the selection process by correlation atddet least fourteen subsets 5,6,7 ...,
13,14,15, 20 and 35 covariables and the total number of coemialihe optimization of
subsets of ideal covariates was based on repeated ciiosgioa (repeatedcv) with 10 folds,
10 repetitions and 5 values of each of the internal hypempeters of each tested algorithm
(tuneLenght). The hyperparameters for each algorithmdaseribed in the Caret package

manual in chapter 6 (“Models described”), available at https://topepo.github.io/caret/train-

models-by-tag.htmIThe metric of to choose the best subset for each m@deKappa.

2.9. Algorithms
Six algorithms were tested: Model Averaged Neural NetwoaikNNet (B. D. Ripley,

1996) C5.0 (Quinlan, 2004 )Gradient Boosting Machine GBM (Friedman, 2001hbRandom
Forest- RF (Breiman, 2001 k-Nearest Neighbors KKNN (Schliep et al., 2016¢ Support
Vector Machines com Radial Basis Function Kern8VMRadialSigma (Cortes and Vapnik,
1995). These algorithms cover a large part of the familiedgoirithms used in prediction in

surveys using a large bank of remote sensing covariates.

2.10. Inselberg training and prediction
Model training was done using the ideal subset in the impa@tselection phase (RFE).

The optimization of the internal parameters of the n®de the training was done using
repeated cross validation (repeatedcv) with 10 folds, 10itiepstand 5 values of each of the
internal hyperparameters of each tested algorithm (tumghgen

To evaluate the performance of the algorithms, the canfusatrix was used to derive
the Kappa (k) Eq. (1) and Accuracy Eq. (2) indices (Coogalt991) and the precision of the
presence-absence predictions was measured using the stdfgticsensitivity (3) and Eq.
specificity (4). Jacob Cohen, in 1960, proposed kappa statasi a measure of agreement
between evaluators on categorical variables (Hazra anthz@917a). The kappa coefficient
provides the numerical classification and depicts the daexgjragreement of the data between

the detection result and the basic referential t{Mbrales et al., 2018). The k value ranges
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from poor (< 0) to almost perfe¢d.8 < K < 1.0) (Landis and Koch, 1977) (Table 3). The
calculated accuracy or global accuracy index indicatesptbbability that the studied and
classified classes correspond to the true data, alsonpirgsealues ranging from 0O to 1,
according to the aforementioned k vaue

The sensitivity assessment metric is equivalent to proqueeision, commonly used
in the remote sensing literature and represents thenpageeof positive observations correctly
predicted, whereas specificity is the percentage of negatigervations correctly predicted

(Tatem et al., 2003) in the prediction of the Inselbergs.

Kappa statistic Strength of agreement

<0 Poor
0-0.2 Slight
0.2-0.4 Fair
0.4-0.6 Moderate
0.6-0.8 Substantial
0.8-1 Almost Perfect

Table 3
Guidelines of Landis and Koch, 1977.

K = N1 My — Nfeq Mg + Ny )
n? — Yi_in; +nyy

Where: k = Kappa estimate; A line value i and column(observed agreement); h=
the sum of the line i; ni = column sum i the confusion matrix (product of the nmelg, the

expected agreement being); n = total number of samples; arndt@l number of classes.

> xi
Accuracy = X 100 (2)

Accuracy is the global accuracy, in which= the sum of all elements on the diagonal

of the confusion matrix; and n = total number of samples.

TP

Sensibility = TP+—F1V

(3)

Where:TP = number of true positive§N = false negatives; and TP + FN = number of

all positives in the supervised classification.

TN

SpGCifiCity = m

(4)

In which: TN = number of true negativeBP = false positives; and TN + FP = number

of all negatives in the supervised classification.
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The final maps for the best models were evaluated @nphediction and estimation
accuracy for the Inselbergs in the study area. The mayes more weight when choosing the
model with better performance. At the end of the trainihg,predicted maps for each model

were generated in the respective work squares.

2.11. Maps and final results
The process of selecting variables in the third phaaigjng and map prediction was

repeated 100 times with different training and validationmgasn This process is important to
assess the variability of the prediction, since thabsets must generate different results and,
consequently, performance for each model (Kuhn and Joh2@b8b). The final results of the
performance were calculated by means of the 100 rounds.iffdenfaps were made by
calculating the mode of the 100 rounds for each pixdi@six study areas. It is worth noting
that mode is a measure of position that indicatesafiem of maximum frequencies in a given
set of values (Neto, 2002)

For the study of the uncertainty of the predictionh& inselbergs by the models, the
prediction accuracy map was also calculated. The predliatouracy map shows the pixels
where the model has always chosen the same class frixed every 100 times the model has
been run. This map demonstrates the ability to visudizeihcertainties of the classification,

showing the capacity for accuracy and precision in thdiption of the algorithms.

The Kruskal-Wallis non-parametric test was also appliethéoevaluation metrics:
kappa index and accuracy. Models and repetitions of 100 thmeshe models were run with
different samples of training and testing were considerpdr@sneters. With the best methods
defined statistically, the results of the maps will bal@ated, verifying with the spatialization
more consistent with the reality of the phenomenospatialization of the Inselbergs for the

study area.

2.12. Assertiveness Index of Algorithms - IAA
The 1AA Eq. (5) was calculated to assess the assertwasfethe best performing

algorithms in the prediction metrics, along a wet to dingate gradient.
IAA = ———— x100 (5)

Where: Amodelo = Area found by the machine learning algoritimeh;/Adotal = Total

area of the reference Inselbergs in the analyzed grid.
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3. Results

3.1. Covariables selected by RFE for each algorithm
The contribution of the selected topographic and spexxariates to the mapping and

spatialization of the Inselbergs varied according to esathine learning algorithm, as shown
in Fig. 3.

The svmRadialSigma and GBM algorithms selected the tasiber of predictive
covariates in the selection of importance among tladyaed algorithms. Using as reference
the number of eight most important covariates seldunyegtie RFE, the topographic covariates
terrain_suface_texture, terrain_surface_convexity, hill, slope_height and thalspeariate
ferrous minerals ratio were selected by at least 3 diffatgatithms among the most important
variables (Fig. 3). The topographic covariate Hill was impari@all the algorithms analyzed
in the classification of the Inselbergs: GBM - 64.91%; avNN&00%; C5.0 - 100%; RF -
100%; KKNN - 91.29% and svmRadialSigma - 44.62%. Another multisedeariate was the
Ferrous Minerals Ratio, a spectral covariate, selectad@stant by 5 algorithms among the
6 analyzed: C5.0 - 100%, RF - 43.30%, avNNet - 21.13% and svmRadialSit& GBM
- 0.61% (Fig. 3).
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Fig. 3. Metrics of importance of covariates for the main randaredictors of the studied
algorithms. The x-axis denotes the importance of thabkrin percentage. The y-axis denotes

the unique identifier for each selected covariate.
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3.2. Evaluation of Inselberg mapping with machine learning algorithms
The analyzed algorithms for the classification of Ineegs showed accuracy values

ranging from 0.89 to 0.96 and kappa index, 0.76 to 0.90 (Table 4; Fign 4eneral,
svmRadialSigma and GBM showed the best performances,kajpa of 0.90 and 0.88,
respectively. The kknn and avNNet algorithms showed the Iqreekirmance for the data set
used, the results are shown in Table 4 and Fig. 4.

According to the Kruskal-Walllis test performed for thelemdon metrics, the tested
algorithms showed statistically significant differencestie final results (Fig. 4). The
prediction statistics did not show overfitting, since thiéetence between the training and
validation sets for accuracy and kappa index were close daq(Eable 4). This shows that the
training and prediction samples showed an adequate numlblee fmapping. Our samples were

well sampled and the MDE and the bands determined the Ingelvell.

Model Kappa training Kappa validation  Overfitting

KKNN 0,8101 0,8047 -0,0054

Random Forest 0,8801 0,8668 -0,0133

AvNNet 0,7850 0,7615 -0,0235

C5.0 0,8939 0,8781 -0,0158

Gradiente Boosting Machine 0,8931 0,8791 -0,0140

svmRadialSigma 0,9064 0,9036 0,0028
Accuracy training  Accuracy validation Overfitting

KKNN 0,9149 0,9125 -0,0024

Random Forest 0,9447 0,9388 -0,0059

AvNNet 0,9017 0,8910 -0,0107

C5.0 0,9515 0,9443 -0,0072

Gradiente Boosting Machine 0,9512 0,9449 -0,0063

svmRadialSigma 0,9572 0,9560 -0,0012

Sensitivity mean  Specificity mean

KKNN 0,9549 0,8351

Random Forest 0,9460 0,9255

AvNNet 0,9159 0,8455

C5.0 0,9578 0,9147

Gradiente Boosting Machine 0,8628 0,8443

svmRadialSigma 0,9860 0,9339

Table 4

Kappa index values, accuracy, overfitting, average seigiind average specificity for the
machine learning models analyzed.
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Fig. 4. Validation metrics of prediction, accuracy and kappa ingleited for the respective
analyzed algorithms.

All models analyzed produced specificities and sensitivitieatgr than 80%, that is,
they showed a high capacity to avoid false negatives andivessirespectively. The
svmRadialSigma algorithm showed higher mean sensitivity spedificity. GBM had the
lowest sensitivity and the kknn model the lowest spegifictiue (Table 4).

It is possible to notice in Fig. 5 that the KKNilavNNet algorithms presented larger
box size and line length, indicating that the classificatprocess varied much in these
algorithms. In the C5.0 algorithm, a more uniform clasdificeis noted, that is, less variation
occurred during the classification of the Sentinel-2/M&ge in this algorithm. A small and
less accentuated shift is observed between the mediamlitnesfour best classifiers shown in
Fig. 5.
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Fig 5. Violinsplot Chart for Accuracy and Kappa Index.

The AvNNet presented four very good classifications (Figo&)the performance was
not superior to the svmRadialSigma and GBM algorithms, wiitbwed a very good
classification peak compared to the other algorithms. Randwesthad four bad ratings, but
its worst rating was not lower than that found for the avNlgarithm, which had the lowest
performance among the algorithms analyzed by the kappa imdeacauracy and statistical
analysis. Analyzing the outliers of each algorithm (Fig. 5), lalisifiers present at least one
bad classification as outlier.

A normal distribution trend was observed for the datavshia Fig. 5. SvmRadialSigma
has a more stable prediction, closer to the mean artk,mwhile avNNet showed more
instability in the prediction, followed by kknn, both had th&dst precision. SymRadialSigma
showed the highest accuracy and GBM, C5.0 and RF showeadtmsbicsl difference, being

the second best accuracy and kappa index found.

3.3. Final maps and prediction accuracy
In general, machine learning algorithms showed good identificatiol spatialization

of inselbergs. To visualize the prediction results, frbmn final maps, the best performance
algorithms in the mapping were selected: GBM, svmRadialSigm#®, and Random Forest for
the Ouro Verde (Fig. 6), Milagres (Fig. 7) and Jacinto (Fidpa3Es.
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Sentinel-2'Owro Verde svmRadialSigm4
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for the America - SIRGAS 2000 ' ! ! [ | Reference Inselbergs in square

Fig. 6. Maps generated by the best performance GBM, SVM, C5.RB&rdassifiers for
Ouro Verde grid in Minas Gerais, Brazil.
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Fig. 7. Maps generated by the GBM, svmRadialSigma, C5.0 and RHielaswith the best
performance for Milagres grid in Bahia, Brazil.
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Fig. 8. Maps generated by the best performance GBM, SVM, C5.R&rdassifiers for
Jacinto grid in Minas Gerais and Babhia, Brazil.

The final map of C5.0 had greater agreement in spatializatith the GBM algorithm,
but it showed less differentiation between the polygorssdlbergs (Figs. 6, 7 and 8). The RF
generalized a little more and approached the Inselberdstedifiating behavior found by
svmRadialSigma.

Between the svmRadialSigma and GBM algorithms, the GBM wasse in
identification. The intervals of changing accuracyhef prediction are shown in green (Fig. 9).
In svmRadialSigma the spatialization of Inselbergs (giteae) indicates less dispersion in
spatialization. C5.0 showed higher final agreement of acgundth the GBM model. The
svmRadialSigma model made less errors in prediction.CEh@ and RF showed intermediate

performance between GBM and svmRadialSigma in the Spatiah of Inselbergs.
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The final maps generated by the GBM algorithm were more aecwompared to

svmRadialSigma. Also, the GBM, presented lower final pi@cisn the mapping result,

indicated by greater green spots in the final maps of tliegion accuracy (Figs. 9 and 10).

Among the analyzed algorithms, svmRadialSigma showed Isperdion in the mapping of

Inselbergs, indicating better precision. For better wstdading of the reader, the GBM and

svmradialSigma algorithms were selected to show the fisaltseand their overlap (Fig. 11).
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Fig. 11.Final map superimposed on the prediction accuracy mapedaBM and SVM
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3.4. Final maps of the GBM algorithm
Based on the results obtained by statistical analysistan final maps of modes and

Inselbergs, the GBM algorithm was selected to demonstratintl maps for the entire study
area. In total 3612 Inselbergs were mapped by the GBM: Milagres (4&da Rzul (626),
Jacinto (982), Novo Oriente (343), Ouro Verde (460) and Boa URA&D).
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3.5. Algorithm Assertiveness Index IAA
The values found for the Algorithm Assertiveness Indexshosvn in Table 5.

IAA (%)
Grid GBM svmRadialSigma

Milagres 21,78 33,70
Pedra Azul 23,15 14,92
Jacinto 43,21 37,27
Novo Oriente 49,88 27,75
Ouro Verde 57,02 30,17
Boa Unido 58,36 38,23

Table 5

Assertiveness index for the algorithms analyzed in thdigiien of the Inselbergs.
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4. Discussion

4.1. Importance of selected covariates in the spatialization of Inbergs
The methodological structure of the research allowedadtete the machine learning

models and the most important covariates for the iitzeson of Inselbergs, as well as to
determine the contribution of each covariate in theliptien by algorithm. The covarables
terrain_surface_texture, terrain_surface convexity, slopghthend hill selected by the RFE
represented important geomorphometric parameters to diginthe Inselbergs in the studied
landscape (Fig. 3).

The covariable terrain_surface_terrain captures the ridges angisydding able to
differentiate the peaks that outline the distributiothefvalleys in the MDE - ALOSPALSAR.
This covariate is calculates the nested-means tectassification, which is defined by both
relief (Z) and spacing (X, Y), can be represented by suclsunes of spatial intricacy as
drainage density and changes in sign of slope, aspectvatung per unit area (lwahashi and
Pike, 2007; Mahmoudzadeh et al., 2020). The slope gradient andeste®iure together are
fundamental in automatic classification of steep topografanyexample, typical Inselbergs
landscapes, however, are unsuitable for discriminating betlveerelief features such as flood
plains or river terraces, according to (Iwahashi and Ri&@7).

According to the results found in this research, terrain seidanvexity was important
to predict Inselbergs, as shown in Fig. 3. This covariatel@ilated as the ratio of the number
of cells having positive curvature to the number of all vaélls within the specified serch
radius (Iwahashi and Pike, 2007). Similar to the texture meada convexity is independent
of the magnitude of the relief and identifies the shajhespositive curvatures of the surface
and / or the local convexity in the landscape, producingtiy®s/alues in convex areas
upwards, negative values in concave areas and zero $tofies (Iwahashi and Pike, 2007). In
this sense, it can be inferred that the Inselbergs lassified as positive curvatures on the
landscape surface, associated with the plains or caimtbereted as isolated pontoons
associated with higher elevations.

The slope_height covariate selected by the algorithms is defirtbd asrtical distance
between the crest and the tip of a slope (GOkceoglu andyARS96).As an important
covariate, the height of the slope limits the sizd apatial extent of the Inselbergs in the
landscape. This covariate characterizes the heigheaflope and assists in parameterizing the
unevenness associated with the relief (Qiu et al., 201®udt be considered that the slope of

the slope and / or hill is another influential factothe modeling processes of the surface and
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appears in many automated methods for land classificatibaugh the regional typologies of
the land surface are built combining relief, inclinatiopagng of resources and other
derivatives of height and geographic location (IwahashiRike, 2007).

The covariables terrain_surface_texture, terrain_seirfaanvexity and slope_heigh
are in line with those suggested by (lwahashi et al., 20@l ase used as diagnostic variables
to differentiate relief classes, topographic targets, dbk ageto contrast stable slopes and
escarpments. According to the selection of the RFE idigarthey proved to be important in
the process of spatialization and mapping of Inselbergg @alimate gradienf{lwahashi and
Kamiya, 1995) suggest these variables to create maps of latsed The concavity and
convexity of the terrain surface are widely used to espiepographic environments
(Hutchinson and Gallant, 1999), so that the texture and docadexity resemble the attributes

of the terrain, such as topographic profile or convexitthefplane (Iwahashi and Pike, 2007)

Among the covariables selected a priori by the models udiig(Bomes et al., 2019)
the topographic covariate hill proved to be important in estrgy area to predict and spatialize
the Inselbergs. All algorithms selected this covariate tectléhe spatial variability of the
Inselbergs in the landscape (Fig. 3). In this sensentinphometric parameters of the terrestrial
surface analyze and parameterize the shape of the suafaeell as, identify specific points
on the surface and classify the terrain into ridgesyesl and channels (Olaya and Conrad,
2009).

The topographimetric covariates generated in Softwape 335.3), from the interface
with the RSAGA package (Brenning, 2008) represents a sehsistent algorithms for spatial
analysis of Digital Elevation Models and spatializatafrinselbergs in different landscapes.
The morphometric covariables such as slope, plain, tunejasolar radiation and topographic
humidity index, also contributed in a different way toedéetthe Inselbergs in the studied
landscape (Fig. 3). We highlight the need to extract primady ssecondary morphometric
attributes embedded in the Digital Elevation Models - MDH ase them to estimate the
presence of Inselbergs.

Of all the spectral covariates selected by the algosthhe Ferrous Minerals Ratio -
FMR index showed the greatest significant importance amanditierent spectral covariates
that predict the Inselbergs (Fig. 3). The FMR is generatad the ratio between the Short
Wave Infra-Red and Near Infra-Red bands. Spectral indieesftan used to classify land use
and land cover to help distinguish land use and land cdesses, especially between

vegetation types (Abdi, 2020). According to (Rowan and Mars, 2088)d ratio images
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illustrate specific characteristics of spectral absorptif minerals in rocks. It is worth noting
that the number d¥eis preferable in almost all granitoids where ferrousfandt iron analyzes
are available, one exception is the classificatiosuites that show a wide range of ¥é
Fe?* due to late subsolid oxidation (Frost et al., 2001). It hag leen recognized that there
are fundamental differences between rock suites that gmdieon enrichment during
differentiation, while silica abundance remains low, ambéhthat undergo silica enrichment
with only minimal FeO enrichment compared to MgO (Nockolds anchAll856).

Generally, many minerals in the iron oxide group (hemakg203, goethite - FeO
(OH)), have a set of broad spectral absorption charstate centered mainly in the regions of
500 and 850 at 910 nm (VNIR and SWIR), while magnetite - Fe204 anditdmd-eTiO3 do
not exhibit spectral features in the visible ranges (Bggio et al., 1996; Mars, 2018). These
considerations are more noticeable for hyperspectral snagéhis sense, our results indicate
that, what really acts in the differentiation of rocks anakes the FMR important in the
prediction is water, mainly for multispectral images usethis research. Inselbergs, due to
their large proportions of bare rock, reflect morehi@ shortwave infrared range, where there
is less water, more reflectance and more water, éffextance in the SWIR band. The biotite
present in the composition of porphyritic granites, tyjpadathe studied region, may also be
acting. According to (Shabani and Lalonde, 2003), the compofidhe main element of
biotite can serve as a tool, among others, for the dizet$in and characterization of granites,
as well as, to understand its petrogenesis, but that nahess methods is infallible or must
be used in isolation.

The Ferrous Minerals Ratio index can also be used to pnatious chemical and
physical characteristics of soils (Shepherd and Walsh, 2@@2prding to (Mathews et al.,
1973), knowledge of the mineralogical composition is esseat@laluate the spectral behavior
of soils, due to the various absorption features and theeimfe on albedo. The observed results
indicate that the mineralogical / mineral indexes camud®d to separate areas with a high
predominance of exposed soil and rocky outcrops in the sgpdreiassification of images by
machine learning algorithms. The use of Sentinel-2/MSI bandsthe technique of dividing
bands were fundamental to separate the Inselbergs anceulifiée them in the process of

distinguishing classes of land use and land cover.
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4.2. Inselbergs precision performance by machine learning algohins
From the precision and performance metrics of the nsptied results confirm the good

performance / performance of the models effectively, aladlythe Gradient Boosting Machine
(GBM), proposed by (Friedman, 2001&ccording b (Dixit et al., 2017), classification
accuracy is the most important parameter for any @lzesson algorithm. In this sense, the
studied models were classified with substantial agreem8uabstantial (0.61-0.80) to almost
perfect - Aimost Perfect (0.81-1.00) in the classificatioandis and Koch, 1977)

By not overfitting, the results found of accuracy and kappaxinufe validation
corroborate to confirm the good results in the mappingioastrated by the small differences
found in the training samples and data validation (Talaled4Fig. 4). The kappa coefficient is
more demanding and provides a measure of the differensedrethe actual data, the reference
data and the classifier used to perform the classificagosus the likelihood of agreement
between the reference data and a random classifier (&tlam 2014).

Regarding the sensitivity and specificity measures usedsesashe performance of
supervised classification algorithms, the results indicpositive observations correctly
predicted for Inselbergs, due to the high values of semgimd specificity found for the
analyzed algorithms. In statistical practice, sensitigtgained at the expense of specificity
and vice versa (Hazra and Gogtay, 2017b). According to Taliles4assible to notice higher
sensitivity values found for all analyzed algorithms, pamed to specificity values. In short,
sensitivity represented the percentage of positive obsamgatcorrectly predicted and
specificity, the percentage of negative observations cityneredicted for Inselbergs (Tatem
et al., 2003).

4.3. Precision accuracy maps and maps of Inselberg prediction
The effectiveness of an automated analysis of the topbgief DEMs can be assessed

in several ways, including map overlay and statisticalisisglwahashi and Pike, 2007)he
similarity in the values of accuracy, sensitivity and #pmty between the algorithms used to
map the Inselbergs showed the viability of the methodologyrfapping the Inselbergs in
tropical landscapes. Considering the focus on mapping paiiakzing Inselbergs, GBM
presented more accurate final maps in the real geolacafidnselbergs in the field and
Sentinel-2/MSI images. According to the results, the GBived more in the prediction
attempts, however, in the final result it got more corrdéte GBM better delimited the
Inselbergs and their respective peaks (highest points abthkg outcrops), compared to the

other analyzed algorithms, mainly in relation to the SVMR&igma, which presented the
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highest accuracy value and kappa index. It is possible to notEg. 10 that more details
about the shape of the Inselbergs are seen in thésre$the GBM algorithm, even presenting
a lower value in the kappa index and final accuracy compgardge SVM, as shown in Fig. 4.

The results demonstrate the importance of rotating th#ets several times to obtain
results closer to reality and we emphasize that thentiede| obtained and selected by the result
of the validation metric does not always present thst@ocurate result in the final agreement
of the maps, therefore, the importance of the use aabtidnalysis of prediction accuracy maps,
satellite images and, when possible, experts in the stpayttbdetermine the best performance
algorithm.

The reasons for the mapping and conservation of Ingslliethe Caatinga and Atlantic
Forest Biomes include their high number of geographicallyiceed and threatened species
that function as islands of terrestrial habitat (Bussed James, 1997). In this sense, geospatial
analysis, conservation measures and connection adtéet femnants of the Inselbegrs and the
surrounding areas are of paramount importance for mainggihese environments threatened
by anthropic pressure.

It is worth mentioning that many inselbergs in the world areatiened by alarming
rates of mining, invasion of exotic grasses, water didlectourism and urbanization, which
results in the loss of biodiversity and degradatiomeiftecosystem services (Paula et al., 2015;
Porembski et al., 2016). The mapping and spatialization assdavith the high precision and
accuracy of the classification obtained in this redeamovide reliable information on the
number and extent of the main Inselbergs in this regidrail, as well as, it can be used as
a reference to plan ecosystem services, forest restoratid management environmental
efficiency for granite Inselbergs rock fields over a cliengtadient.

It is worth mentioning that many Inselbergs in the world areatbreed by alarming
rates of mining, invasion of exotic grasses, water didlectourism and urbanization, which
results in the loss of biodiversity and degradatiomeiftecosystem services (Paula et al., 2015;
Porembski et al., 2016). The spatialization of Inselbeaigsociated with high precision and
accuracy in the results of the classification obtaimedthis research, provide reliable
approximate information on the number and spatial extetiite main Inselbergs in this region
of Brazil under the climatic domain of the AtlanticrEst and Caatinga, as well as, this
modeling can be used as a reference for planning ecosysteiresgrforest / ecological

restoration and more assertive environmental manageaoregtahite Inselbergs rock fields.
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4.4. Algorithm Assertiveness Index - IAA
According to the results of the spatial assertivenéS® Inselbergs analyzed separately

by grid (Table 5), there was a better performance of the GBMidhm in the grid inserted in
the climatic domain Aw, humid climate. The svmRadialSigatgorithm showed better
performance in the Milagres/Bahia grid, inserted predomipantithe BSh domain, dry
climate. The results found from the IAA corroborate to usiderd that the machine learning
algorithms can present different performances along atatigpadient, whether in the domain
of the Atlantic Forest and/or the Caatinga.

5. Conclusion

The machine learning algorithms used had adequate performancempiping
inselbergs from Brazil, with a kappa index ranging from 0.80 83.0The Sentinel-2/MSI
images classified by the supervised machine learning algorithms GBM, C5.0 and RF
showed consistent and reliable results in the mapping addlimg of Inselbergs and associates
landscapes.

The Model Gradient Boosting Machine - GBM presented the second biestyzarce
in the classification of the Inselbergs and the beseaggat in the final maps. Machine learning
algorithms can perform differently according to the climatmain of the study area, whether
it is predominantly wet or dry.

The methodology used in this research has applicabilither global regions with

similar of Inselbergs and landscapes.
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