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RESUMO 

 

ROCHA, Samuel José Silva Soares da, D.Sc., Universidade Federal de Viçosa, abril de 2021. 
Métodos de aprendizado de máquina aplicados a modelagem de florestas inequiâneas. 
Orientador: Carlos Moreira Miquelino Eleto Torres. Coorientadores: Helio Garcia Leite e 
Laércio Antônio Gonçalves Jacovine. 
 

 

As florestas tropicais vêm sofrendo com a fragmentação e o desmatamento. No Brasil, a Mata 

Atlântica e a floresta Amazônica são exemplos disso. Nesses biomas, o conhecimento e a 

modelagem dos atributos florestais podem ser ferramentas úteis na compreensão destes biomas 

e no auxílio para adoção de medidas e práticas de manutenção da biodiversidade. Modelos de 

aprendizado de máquina podem ser técnicas promissoras nessas tarefas. Assim, o objetivo dessa 

pesquisa foi avaliar modelos de aprendizado de máquina para estimativas de atributos no bioma 

da Mata Atlântica e da Floresta Amazônica, no Brasil. Utilizamos dados de sete fragmentos de 

Mata Atlântica localizados em Minas Gerais, Brasil e uma área sob manejo florestal no sudoeste 

da Amazônia, no município de Porto Acre, estado do Acre, Brasil. Para atender os objetivos o 

trabalho foi dividido em quatro artigos. No primeiro artigo, aplicou-se modelos de aprendizado 

de máquina, Redes Neurais Artificiais (RNA), Máquina de Vetor de Suporte (MVS) e Random 

Forests (RF), para prever o recrutamento em nível de parcela na Mata Atlântica do Brasil. 

Atributos florestais, histórico de uso do solo, paisagem, solo e características climáticas foram 

usados na modelagem. O método Recursive Feature Elimination foi usado para selecionar o 

melhor subconjunto de variáveis preditoras. Observou-se que clima, paisagem, histórico de uso 

da terra e atributos da floresta são variáveis importantes para prever o recrutamento de árvores 

na Mata Atlântica no Brasil. O RF apresentou o melhor desempenho para estimar as taxas de 

recrutamento, com o maior Coeficiente de Correlação de Pearson (𝑟𝑦𝑦̂) e os menores Raiz do 

Erro Quadrático Médio (REQM) e Erro Médio Absoluto (EMA) para todas as repetições. No 

segundo artigo, utilizou-se as variáveis e modelos do primeiro artigo para estimar as taxas de 

mortalidade em nível de parcela. Constatou-se que o clima (precipitação, déficit hídrico 

climático e temperatura), idade de abandono e área basal são variáveis importantes para predizer 

a mortalidade de árvores na Mata Atlântica no Brasil. O RF também apresentou o melhor 

desempenho para estimar as taxas de mortalidade. No terceiro artigo, estimou-se o crescimento 

líquido com as informações utilizadas nos dois primeiros artigos. Observou-se que as variáveis 

edáficas, atributos da floresta e climáticas são importantes preditores das taxas de crescimento 

líquido na Mata Atlântica brasileira. Os métodos de aprendizado de máquina foram eficientes. 



 

 

O método Random Forests também mostrou superioridade sobre os demais para modelagem de 

crescimento na Mata Atlântica. No quarto artigo, estimou-se o volume e biomassa de árvores 

comerciais no sudoeste da Amazônia. Utilizou-se variáveis dendrométricas, climáticas e 

topográficas. O Algoritmo de Boruta foi aplicado para selecionar o melhor conjunto de 

variáveis. Máquina de Vetor de Suporte (MVS), Redes Neurais Artificiais (RNA), Random 

Forests (RF) e Modelo Linear Generalizado (MLG) foram os métodos de aprendizado de 

máquina avaliados. Em geral, os métodos avaliados mostraram um poder de generalização 

satisfatório. Os resultados mostraram que as previsões de volume e biomassa de árvores 

comerciais na floresta amazônica diferiram entre as técnicas (p <0,05). As RNAs apresentaram 

os melhores desempenhos para prever o volume e a biomassa das árvores comerciais, com o 

maior 𝑟𝑦𝑦̂ e os menores REQM e EMA. Por fim, constatamos que a utilização de Aprendizado 

de Máquina é uma abordagem promissora em estimativas de atributos na Mata Atlântica e na 

Floresta Amazônica. Esses modelos representam uma alternativa para modelagem de florestas 

tropicais ao redor do mundo, sobretudo as ameaçadas, como as aqui estudadas. 

 

Palavras-chave: Florestas tropicais. Inteligência Artificial. Dinâmica Florestal. Recrutamento. 

Mortalidade. Crescimento. 

  



 

 

ABSTRACT 

 

ROCHA, Samuel José Silva Soares da, D.Sc., Universidade Federal de Viçosa, April, 2021. 
Machine learning methods applied to uneven‑aged mixed forest modelling. Adviser: Carlos 
Moreira Miquelino Eleto Torres. Co-advisers: Helio Garcia Leite and Laércio Antônio 
Gonçalves Jacovine. 
 

 

Tropical forests have been suffering from fragmentation and deforestation. In Brazil, the 

Atlantic Forest and the Amazon rainforest are examples of this. In these biomes, knowledge 

and modeling of forest attributes can be useful tools in understanding these biomes and in 

helping to adopt measures and practices for maintaining biodiversity. Machine learning models 

can be promising techniques in these tasks. Thus, the objective of this research was to evaluate 

machine learning models for estimating attributes in the Atlantic Forest and Amazon Forest 

biome, in Brazil. We used data from seven fragments of Atlantic Forest located in Minas Gerais, 

Brazil and an area under forest management in southwestern Amazonia, in the municipality of 

Porto Acre, state of Acre, Brazil. To meet the objectives, the work was divided into four 

scientific papers. In the first, machine learning models, Artificial Neural Networks (ANN), 

Support Vector Machine (SVM) and Random Forests (RF) were applied to predict recruitment 

at plot level in the Brazilian Atlantic Forest. Forest attributes, history of land use, landscape, 

soil and climatic characteristics were used in the modeling. The Recursive Feature Elimination 

method was used to select the best subset of predictor variables. It was observed that climate, 

landscape, history of land use and attributes of the forest are important variables to predict the 

recruitment of trees in the Atlantic Forest in Brazil. The RF presented the best performance to 

estimate recruitment rates, with the highest Pearson correlation coefficient (𝑟𝑦𝑦̂) and the lowest 

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) for all repetitions. In the 

second article, the variables and models of the first article were used to estimate mortality rates 

at the plot level. It was found that the climate (precipitation, water deficit and temperature), age 

of abandonment and basal area are important variables to predict the mortality of trees in the 

Atlantic Forest in Brazil. The RF also performed best to estimate mortality rates. In the third 

paper, net growth was estimated with the information used in the first two articles. It was 

observed that the edaphic, forest attributes and climatic variables are important predictors of 

the net growth rates in the Brazilian Atlantic Forest. Machine learning methods were efficient. 

The Random Forests method also showed superiority over the others for modeling growth in 

the Atlantic Forest. In the fourth paper, the volume and biomass of commercial trees in the 



 

 

southwest of the Amazon were estimated. Dendrometric, climatic and topographic variables 

were used. The Boruta Algorithm was applied to select the best set of variables. Support Vector 

Machine (SVM), Artificial Neural Networks (ANN), Random Forests (RF) and Generalized 

Linear Model (GLM) were the machine learning methods evaluated. In general, the evaluated 

methods showed a satisfactory generalization power. The results showed that the volume and 

biomass predictions of commercial trees in the Amazon rainforest differed between the 

techniques (p <0.05). The ANNs showed the best performances to predict the volume and 

biomass of commercial trees, with the highest 𝑟𝑦𝑦̂ and the lowest RSME and MAE. Finally, we 

found that the use of Machine Learning is a promising approach in estimating attributes in the 

Atlantic Forest and the Amazon Forest. These models represent an alternative for modeling 

tropical forests around the world, especially threatened, such as those studied here. 

 

Keywords: Tropical forests. Artificial Intelligence. Forest Dynamics. Recruitment. Mortality. 

Growth.   
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INTRODUÇÃO GERAL 

 

As florestas tropicais são vitais para a biodiversidade global, pois são meios de  

subsistência para muitas comunidades locais, além de fornecerem diversos serviços 

ecossistêmicos (Neef, 2020; Sullivan et al., 2017). No Brasil, a Mata Atlântica e a Floresta 

Amazônica merecem uma atenção especial. A Mata Atlântica é uma das florestas mais 

fragmentadas do mundo (Haddad et al., 2015) e a Floresta Amazônica nos últimos anos, vêm 

sofrendo bastante com o desmatamento (Fearnside, 2021). 

Nesse contexto, a compreensão dos processos demográficos (crescimento, ingresso e 

mortalidade) destas florestas, podem ser úteis na manutenção da biodiversidade e garantia de 

manejo florestal sustentável. Esses processos e a produtividade primária em regiões tropicais 

são influenciadas pelas interações entre clima, solo, ações antrópicas e paisagem (Malhi et al., 

2015; Wagner et al., 2016).  

Por isso, modelos de aprendizagem de máquina que integrem essas variáveis podem 

servir como base para prognosticar a dinâmica de árvores em florestas tropicais, além de 

fornecerem subsídios para avaliação dos seus consequentes impactos na dinâmica florestal, tal 

como nos estoques e perdas de carbono ocasionadas por variações no clima (Allen et al., 2015; 

Anderegg et al., 2012; Intergovernmental Panel on Climate Change, 2014). 

Aprendizado de máquina é uma área de estudo da inteligência artificial em rápido 

crescimento que deve se tornar mais comum para a modelagem florestal devido ao seu potencial 

para produzir modelos melhores do que as abordagens tradicionais de modelagem de dados 

(Gleason and Im, 2012; Jachowski et al., 2013; Zhao et al., 2011). As aplicações desta técnica 

de inteligência computacional na área florestal têm ganhado alta relevância (Reis et al., 2018, 

2016; Rocha et al., 2018; Tavares Júnior et al., 2020). Modelos de aprendizado de máquina já 

foram testados com eficiência para estimar o crescimento das árvores (Reis et al., 2016), 

biomassa e carbono (Corona-Núñez et al., 2017; Nandy et al., 2017; Santi et al., 2017), mapear 

a riqueza e composição de espécies (Foody and Cutler, 2006), prognósticos de diâmetro e altura 

de árvores (Diamantopoulou et al., 2015; Diamantopoulou and Özçelik, 2012; Vieira et al., 

2018); mapeamento da estrutura de floresta tropical (Ingram et al., 2005) e avaliar os parâmetros 

da qualidade florestal (Zhao et al., 2019). Desse modo, a aplicação desses modelos em 

estimativas de dinâmica e estoque em florestas tropicias podem representar uma alternativa 

promissora. 

Neste estudo, realizou-se uma comparação de técnicas de aprendizagem de máquina, a 

saber: Redes Neurais Artificiais, Máquina de Vetores de Suporte, Random Forest e Modelo 
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Linear Generalizado para prever atributos de florestas no bioma Mata Atlântica e na Amazônia 

brasileira. Para isso, objetivou-se avaliar modelos de aprendizado de máquina para estimativas 

de atributos no bioma da Mata Atlântica e da Floresta Amazônica, no Brasil. Para atender a 

estes objetivos, o trabalho foi dividido em artigos, conforme descrito a seguir. 

Artigo 1: Machine learning: Modeling tree recruitment rates in Atlantic Forest, Brazil; 

Artigo 2: Machine learning: Modeling tree mortality rates in Atlantic Forest, Brazil; 

Artigo 3: Comparison of machine learning methods in net growth estimates in the 

Atlantic Forest of Brazil; 

Artigo 4: Volume and biomass estimates of commercial trees in the Amazon forest using 

machine learning. 
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Abstract 
Tree recruitment models are important in projections future forest growth and production. 

However, it is often neglected in dynamics models. In this study, we evaluated machine learning 

techniques to predict recruitment rates. We used Artificial Neural Networks (ANN), Suport 

Vector Machine (SVM) and Random Forest (RF). We calculated the recruitment rate (R) and 

relative recruitment rate (Rrel), % basal area (BA) year-1 at plot level. Seven Atlantic Forest 

fragments located in Brazil were studied. We collect information about Forest attributes, land 

use history, landscape, soil and climatic characteristics. Recursive Feature Elimination was 

used to select the best subset of predictor variables. We have found that climate, landscape, 

land use history and forest attributes are important variables to predict tree recruitment in the 

Atlantic Forest in Brazil. Machine Leaning are efficient methods to estimate recruitment rates 

at plot-level with these variables. The results show differences in the prediction of recruitment 

rates in the Atlantic Forest, the models used differed from each other (p <0.05). The Friedman 

and Nemenyi nonparametric test confirm that the RF model is the best. Our results, they suggest 

a new alternative for modeling this important component of forest dynamics. And it can help 

improve estimates of the dynamics, growth, and production of native forests, especially those 

of the Atlantic Forest. 

 

Keywords: forest dynamics, recruitment, tropical forest, Brazil. 

 

 

1.  Introduction 

 

The Brazilian Atlantic Forest is one of the most endangered biodiversity hostpots in the 

world (Bellard et al., 2014; Ribeiro et al., 2009; Scarano and Ceotto, 2015). Urbanization, 

industrialization, and agricultural land use have caused the fragmentation of the biome (Scarano 

and Ceotto, 2015). The remaining fragments suffer from the erosion of biomass and biodiversity 

(de Lima et al., 2020). In this context, knowledge and modeling of forest dynamics can help in 

understanding it and in habitat conservation strategies. 

Forest demographic processes include three components: tree mortality, tree growth, 

and recruitment of new trees (Zhang et al., 2012). Mortality and growth models in the biome 

have already been performed (Rocha et al., 2018; Tavares Júnior et al., 2020). As for 

recruitment, there are few studies. Because forest management requires a long-term 

perspective, exploring patterns of tree recruitment under perspectives of global change in 
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climate, can increase our understanding of the composition, structure, and function of forests 

around the world (Perea et al., 2020), and is an important step in understanding the biome. 

Recruitment models are important tools for predicting forest dynamics, especially for 

long-term projections of future forest composition (de Avila et al., 2017; Xiang et al., 2016). 

Disregarding it will provide a biased prediction of future forest growth and productivity (Zhang 

et al., 2012). The recruitment of trees in secondary threatened forests, such as those of the 

Atlantic Forest, is important for the design of local conservation and restoration strategies  

(Safar et al., 2020).  

However, as a highly variable, complicated and largely stochastic process, tree 

recruitment remains difficult to model accurately (Xiang et al., 2016). Several factors affect 

tree recruitment (Clement et al., 2019) and are often neglected in models of native forest 

dynamics. In addition, the use of edaphic, climatic, landscape, and especially land use history 

variables can improve the estimates. In human-modified landscapes, successional pathways are 

largely defined by land-use history (Jakovac et al., 2021). 

Because of this high variability and stochastic process, machine learning models may 

be a promising approach in predicting this component of the dynamics. Machine learning is a 

fast-growing area of artificial intelligence that performs well in tropical forest dynamics models 

(Reis et al., 2018, 2016; Rocha et al., 2018; Tavares Júnior et al., 2020).. 

The objective of the present study is to develop models of machine learning, Artificial 

Neural Networks (ANN), Support Vector Machine (SVM) and Random Forest (RF) capable of 

estimating the recruitment rates in Atlantic Forest fragments, based on forest attributes, land 

use history, landscape, soil and climatic characteristics. (i) What are the most important 

variables to estimate recruitment in these forests? (ii) Are the machine learning methods 

evaluated efficient for estimating the recruitment rates at plot-level? (iii) What is the best 

method to estimate the recruitment rates at plot-level? 

 

2. Material and methods 

2.1.Study sites and plot characteristics 

We used data from seven Atlantic Forest fragments located in Minas Gerais, Brazil 

(Table 1 and Figure 1). The vegetation is classified as semideciduous seasonal forest (IBGE, 

2012). Across sites the annual rainfall varies from 701 to 1737 mm. year-1, elevation from 242 

to 1169 m above sea level, and slope from 2.97 to 65.81% (Table S1). 
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Figure 1. Locations of the seven studied Atlantic Forest fragments (FR) in Minas Gerais, Brazil. 
FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
 

We measured 104 plots located in seven forest fragments over several years (Table 1). 

In all plots, we measured and identified botanically all stems with diameter at breast height 

(dbh), 1.3 m ≥ 5 cm. 

 

Table 1. Overview of the seven studied Atlantic Forest fragments (FR) in Minas Gerais, Brazil. 
Forest fragments location (municipality), size, number and size of plots, and years of forest 
inventory are also provided 

Fragment Municipality 
Forest Size 

(ha) 
Plots 

Plots 
size (ha) 

Measurement 
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FR1 Guanhães 106.0 20 0.05 2002, 2007, 2012, 2017 

FR2 Viçosa 21.8 50 0.01 
1996, 1998, 2001, 2003, 

2013, 2018 
FR3 Caratinga 264.0 16 0.05 2002, 2007, 2012, 2017 
FR4 Caratinga 37.3 6 0.05 2002, 2007, 2012, 2017 
FR5 Viçosa 44.1 20 0.05 2010, 2015 

FR6 
Coronel 

Fabriciano 
38.4 12 0.05 2002, 2007, 2012, 2017 

FR7 Viçosa 17.0 10 0.10 
1994, 1997, 2000, 2004, 
2008, 2010, 2013, 2016 

FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
 

We calculated the recruitment rate at plot level (van der Sande et al., 2017). The 

recruitment rate (% year-1) was calculated as proposed (Shiel and May, 1996) (Equation 1). 

 
R= (((N0+r)/N0)1

y-1) x100 
(1) 

Where: 

R - annual recruitment rate, % year -1 

N0 - number of individuals in the initial population; 

r - number of recruits trees; 

y - time, years. 

 

As demographic processes may be influence by the total basal area (BA) of the plot 

(Breugel et al., 2019; Carreño‐Rocabado et al., 2012; Menezes and Melo, 2019; Rozendaal and 

Chazdon, 2015). We calculated the BA of each individual tree and measurement year to 

estimate the relative recruitment rate at plot level (van der Sande et al., 2017). Recruitment is 

the basal area of stems that reached the minimum diameter for inclusion (dbh > 5 cm) in census 

tn + 1. Relative recruitment rate (Rrel) was calculated (Lebrija-Trejos et al., 2010; Martínez-

Ramos et al., 2018) (Equation 2). 

 

 
Rrel = (1-((N0+r)/N0)1

y) x100 
(2) 

Where: 

Rrel - Relative recruitment rate, % BA year-1; 

N0 - Basal area of the stems alive on census in the initial population; 

r - Basal area of recruitment (m2); 

y - time, years. 
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2.2.Forest attributes and Anthropogenic variables 

We use forest attributes from Atlantic Forest fragments as predictive variables. The 

attributes of the forest used were: Basal area of the plot and Number of stems. This information 

was collected through forest inventories carried out over the years. 

The Anthropogenic variables used to estimate tree recruitment rates were: Land use 

history, forest cover, forest size and edge distance, age of abandonment (that means, time since 

abandonment previous anthropogenic uses). Based on information collected from aerial 

photographs (from around 1960, 1980 and 1990), Landsat satellite images from 1985, 

landowner interviews and land titles, we determined the Land use history and age of 

abandonment of the areas. The categories of land use used were: deforestation, agricultural 

production, eucalyptus plantation, and selective logging. 

Forest cover was calculated for each plot using circular buffers with radii of 500, 1000, 

and 2000 m, for the year 1985, 2002 and 2017, with data from MapsBiomas (MapBiomas 

Project, 2019) in ArcGIS 10.3.1 (ESRI, 2015). Forest cover area was produced from the pixel-

per-pixel (30 x 30 m) classification of Landsat satellite images through the Google Earth Engine 

platform (MapBiomas Project, 2019). We calculated distance to the nearest edge of the forest 

(edge distance) with near tool in ArcGIS 10.3.1 1 (ESRI, 2015). 

 

2.3.Climate variables 

We obtained annual precipitation, the number of months with less than 100 mm of 

rainfall, precipitation in the three driest months, and average annual temperature for each 

fragment from the nearest climatological station (Figure S1). We then estimated the climatic 

water deficit (CWD) – a water balance between precipitation and evapotranspiration – as a 

proxy for drought conditions following Lutz et al. (2010) and using the R function CWD and 

AET (actual evapotranspiration) from Redmond (2019). 

We used slope, latitude, aspect, precipitation and temperature of the site for monthly 

calculations. AET as the evaporative water loss from a site covered by a hypothetical standard 

crop, given the prevailing water availability (Stephenson, 1998). 

CWD reflects drought conditions more accurately than total annual rainfall (Chave et 

al., 2014), and was consider anthropogenic variable. More negative CWD indicates high water 

stress conditions and values close to 0 (zero) indicates not water stressed (Poorter et al., 2017). 

We calculated the average of total annual precipitation and CWD for one, two, three and four 

years before the measurement year. 

 



23 
 

 

 

 

2.4.Soil and topography variables 

In predicted climate change scenarios of increased frequency of extreme storms, soil 

and topography may become more useful for improving estimates of tree recruitment and 

biomass losses over large areas (de Toledo et al., 2012). Thus, edaphic and topographic 

information was collected. 

We collect soil samples for each plot. We obtained information for the depths of 0-20 

cm and 20-40 cm. 20-30 samples were collected per plot to obtain a composite sample. Soil pH 

in H2O, exchangeable cations (Ca2+, Mg2+ and Al3+), total acidity (H++ Al3+), cation exchange 

capacity (CEC), base saturation (V), available phosphorus (P), P remaining in solution (P-res) 

and soil organic matter (SOM) were determined using standard methods (Teixeira et al., 2017). 

The soil analyses were performed at the laboratory of Soil Fertility at the Universidade Federal 

de Viçosa (UFV), Brazil. 

To account for differences in topography, we calculated for each plot the elevation, 

slope and aspect using Spatial Analyst Tools of surface in ArcGIS 10.3.1 1 (ESRI, 2015). We 

used the Shuttle Radar Topography Mission (SRTM) and Digital Elevation Models (DEMs) for 

the analysis. 

 

2.5.Data analyses 

2.5.1. Variables selection 

We performed tests to determine the variables to be included in the statistical models to 

assess the effect of anthropogenic and environmental variables (Table S1) on relative 

recruitment. 

 

Quantitative variables were standardized to accelerate the convergence rate and reduce 

the iteration process in training (Equation 3). The scale function of R Software was used in this 

step. 

Zi = (xi-𝑥̅)/σ 

 

(3) 

 

where: 

Zi = standardized value of the i-th observation; 

xi = value of the i-th observation; 
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 𝑥̅ = average of the observed values; 

σ = standard deviation. 

 

First, we exclude highly correlated variables using a correlation coefficient limit of ± 

0.9 (Leite et al., 2020; Silva et al., 2016). Subsequently, a method based on Recursive Feature 

Elimination (RFE) (Gomes et al., 2019), was used, considering only the variables not excluded 

in the first step to select the best subset of variables. This method is a reverse selection algorithm 

that calculates the importance of the resource in each iteration, classifying them from most 

important to least important, removing a user-defined subset at each stage (Kuhn and Johnson, 

2013a, 2013b). Although resource collinearity cannot severely affect nonparametric methods, 

the exclusion of highly correlated methods was important to make RFE iterations more 

constant, as resources can be interchangeable within models (Leite et al., 2020). 

 

2.5.2. Model selection, evaluation, and inference 

The tested models to estimate the recruitment rates were: SVM, ANN and RF. The 

trained ANN was the multilayer perceptron, also known as the multilayer perceptron (MLP), 

with a hidden layer. The range of neurons in this layer was defined by the Fletcher-Gloss 

method (Silva et al., 2010): 2 × n0.5 + n2 ≤ n1 ≤ 2 × n + 1; where n = number of network inputs; 

n1 = amount of neurons in the hidden layer; and n2 = number of neurons in the output layer. 

The activation functions tested were exponential, identity, logistic, and hyperbolic tangent. The 

training algorithms used were resilient propagation (Rprop) and scaled conjugate gradient 

(SCG). The initial ANN weights were randomly generated, and the maximum number of 

iterations was 100 due to the error becoming constant before this number. The ANNs were 

implemented with the MLP function of the “RSNNS” Package in R (Bergmeir and Benítez, 

2012). The function SVM of the “e1071” Package on R was used for training SVMs. Thus, four 

configurations were used in the SVR training, represented by four kernel functions: Linear, 

Polynomial, Radial basis and Sigmoid. 

In the RF training, three essential parameters were configured: the number of random 

regression trees (ntree, tested 20 to 100 trees); the number of division variables (mtry, used to 

determine the number of variables available to each node of the tree, with the default number 

of 1/3 of the independent variables); and the minimum size of nodes (node size, value = 5). 

The performance of the models in the estimation was assessed using the k–fold cross-

validation method, with the data divided into 5 folds (4 for adjustments/training and 1 for 

validation). At each adjustment/training of the folds the metrics of Root Mean Square Error – 
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RMSE (Equation 4); Mean Absolute Error – MAE (Equation 5), Pearson correlation coefficient 

- 𝑟𝑦𝑦̂ (Equation 6); BIAS (Equation 7) and Relative Bias (%) (Equation 8) were calculated. This 

process was repeated 50 times, obtaining the average of the metrics for comparison of all 

models. The data were selected randomly in each of the 50 repetitions, resulting in different 

data sets, for greater robustness of the evaluation. 

𝑅𝑀𝑆𝐸 =  √∑ ∑ (𝑋𝑖 − 𝑋̂𝑖)²𝑛𝑖=1 𝑛𝑅
𝑟=1  (4) 

 

𝑀𝐴𝐸 =  ∑ |∑ (𝑋𝑖 − 𝑋̂𝑖)𝑛𝑖=1 |𝑛𝑅
𝑟=1  

(5) 

 𝑟𝑦𝑦̂ =  𝑐𝑜𝑣(𝑋, 𝑋̂)√𝑠2(𝑋) × 𝑠2(𝑋̂) 

 

(6) 

 𝐵𝑖𝑎𝑠 =  (∑ 𝑋𝑖 − 𝑋̂𝑖𝑛𝑖 )𝑛  

 

(7) 

 𝑟𝐵𝑖𝑎𝑠 (%) =  𝐵𝑖𝑎𝑠𝑋̅ × 100 

 

(8) 

Where: 

n = number of observations; 𝑋𝑖  = observed variable from the i-th plot; 𝑋̂𝑖  = estimated variable of the i-th plot. 

 

The averages of RMSE, MAE, 𝑟𝑦𝑦̂  and Bias of each method in each repetition were 

ranked with weight assignments from 1 to 3, with 1 for the lowest value and 3 for the highest 

value. With the result of these sums, the values were submitted to the Friedman – Nemenyi test, 

at the 5% significance level (Equation 9). 

The Friedman and Nemenyi nonparametric tests were used to compare ANN, SVR, and 

RF, based on the cross-validation RMSE, MAE, r and Bias means. The null hypothesis of 



26 
 

 

Friedman's test is that all algorithms are equivalent. Nemenyi's post hoc test is applied to report 

significant differences between the techniques if the null hypothesis is rejected. The techniques' 

performance differs when the mean RMSE by at least one calculated critical difference (CD) 

differs (Tavares Júnior et al., 2020). 

𝐶𝐷 = 𝑞𝛼√𝑘(𝑘 + 1)6𝑁  (9) 

Where: 

CD = critical difference; 𝑞𝛼  = critical value calculated based on Studentized interval statistics divided by √2; 

k = number of algorithms being compared; 

N = number of data sets. 

In total, 280 ANNs, 162 RFs and 8 SVM were trained for all fragments for estimate 

annual recruitment rate and relative recruitment rate of the Brazilian Atlantic Forest. The 

methodological flowchart used is presented below (Figure 2). 
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Figure 2. Methodological flowchart for modeling tree recruitment rates in Atlantic Forest in 

Brazil. 

3. Results 

We found that CWD, age of abandonment, BA, forest cover, annual and average 

temperature and precipitation and mean annual precipitation (4 years before measurement) were 

the most important variables to predict the annual recruitment rate of trees in the Atlantic Forest 

(Figure 3). 
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Figure 3. Most important variables for modeling the recruitment rate (R) of studied Atlantic 
Forest fragments in Minas Gerais, Brazil. CWD: climatic water deficit (from 1989 to 1 year 
before measurement); Age_Aban: age of Abandonment; BA: basal area; 
Forest_cover_2002_1000: Forest cover (ha); Year=2002-Buffer=1000m; 
Forest_cover_1985_500: Forest cover (ha); Year=1985 - Buffer=500m; Precp: Annual 
precipitation (measurement year); Temp: mean annual temperature 1 year before measurement; 
Temp_avrg: Average of Mean annual temperature (from 1989 to 1 year before measurement); 
Precp_avrg: Mean annual precipitation (from 1989 to 1 year before measurement); Precp_4: 
mean annual precipitation (4 years before measurement). 
 

The variables BA, land use history (eucalyptus and selective logging), forest cover, 

elevation, age of abandonment, average temperature, annual and average precipitation and 

mean annual precipitation (1 and 2 years before measurement) most important in predicting the 

relative recruitment rates in BA (Figure 4). 
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Figure 4. Most important variables for modeling the relative recruitment rate (Rrel) of studied 
Atlantic Forest fragments in Minas Gerais, Brazil. BA: basal area; Selective_logging: Land Use 
History - Selective Logging; Forest_cover_1985_500: Forest cover (ha); Year=1985 - 
Buffer=500m; Elevation: Elevation (m); Forest_cover_1985_1000: Forest cover (ha); 
Year=1985 - Buffer=1000m; Age_Aban: age of Abandonment; Forest_cover_2002_1000: 
Forest cover (ha); Year=2002-Buffer=1000m; Precp_2: mean annual precipitation (1 and 2 
years before measurement); Temp_avrg: Average of Mean annual temperature (from 1989 to 1 
year before measurement); Precp: Annual precipitation (measurement year); Precp_1: Annual 
precipitation (1 year before measurement); Precp_avrg: Mean annual precipitation (from 1989 
to 1 year before measurement); Eucalyptus: Land Use History - Selective Logging 
 

The evaluated models showed a satisfactory generalization power, indicated by similar 

precision results between the observed and estimated data in the validation for all variables 

studied (Figure 5 and 6). The trained models showed similar patterns of error distribution, with 

the largest errors in the plots with the highest rates (Figure 5 and 6).  
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Figure 5. Observed and predicted and residuals values of recruitment rate (R) for the different 
machine learning models, SVM, ANN and RF tested in Atlantic Forest fragments in Minas 
Gerais, Brazil. Colors represent the areas. Each small point represents the plots by areas. FR1: 
Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; FR5: 
Centev; FR6: São José and FR7: Mata da Silvicultura. 
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Figure 6. Observed and predicted and residuals values of relative recruitment rate (Rrel) for the 
different machine learning models, SVM, ANN and RF tested in Atlantic Forest fragments in 
Minas Gerais, Brazil. Colors represent the areas. Each small point represents the plots by areas. 
FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
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RF showed the best performance to estimate the recruitment trees, with the highest ryŷ 

and the lowest RMSE and MAE for all repetitions (Table 3). ANN had the moderate 

performance to predict R and Rrel. The SVM had the worst performance for predicting the 

recruitment in Atlantic Forest.
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Table 3. Statistics of the machine learning models, SVM, ANN and RF tested in Atlantic Forest fragments in Minas Gerais, Brazil 

 
Type 

 
Input Output Technique Neur./Trees Algorithm Function RMSE MAE r Bias 

Train 
Climate; Land 

use history; 
Forest Attributes 

R 
RF 62   0.260±0.032 0.178±0.017 0.871±0.044 -0.907±4.796 

ANN 9 Rprop Tangential 0.306±0.032 0.219±0.021 0.813±0.056 -0.125±5.22 
SVM   Radial 0.371±0.057 0.24±0.026 0.733±0.071 10.013±5.43 

Test 
Climate; Land 

use history; 
Forest Attributes 

R 
RF 62   0.262±0.008 0.178±0.004 0.872±0.01 -0.683±1.189 

ANN 9 Rprop Tangential 0.307±0.008 0.219±0.005 0.813±0.056 -0.125±5.22 
SVM   Radial 0.375±0.014 0.24±0.007 0.731±0.017 10.318±1.338 

Train 

Climate; 
Landscape; Land 

use history; 
Forest Attributes 

Rrel 

RF 75   0.324±0.078 0.203±0.029 0.882±0.034 -1.345±6.229 
ANN 10 Rprop Logistic 0.314±0.045 0.221±0.025 0.872±0.037 -1.722±6.238 

SVM   Radial 0.423±0.087 0.245±0.039 0.786±0.046 13.065±6.803 

Test 

Climate; 
Landscape; Land 

use history; 
Forest Attributes 

Rrel 

RF 75   0.332±0.021 0.203±0.007 0.876±0.01 -0.86±1.573 
ANN 10 Rprop Logistic 0.317±0.012 0.221±0.006 0.872±0.037 -1.722±6.238 

SVM   Radial 0.431±0.023 0.245±0.01 0.781±0.011 13.558±1.714 

Where: RMSE: Root Mean Square Error; MAE: mean absolute error; SVM: Support Vector Machine; ANN: Artificial Neural Networks; RF: 
Random Forest. Rprop: Resilient backpropagation. Climate: CWD; Precp; Temp; Temp_avrg; Precp_avrg; Precp_4; Precp_2; Landscape: 
Elevation, Forest Cover; Forest Attributes: BA, Age_Aban. 
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 We observed some stability and little variation in the metrics over the 50 repetitions of 

the cross-validation The RMSE averages of RF, over the 50 repetitions in the cross-validation, 

showed the lowest values to estimate the recruitment of trees and the highest values of 

correlation (Figure 7) for all variables evaluated in the seven fragments of the Atlantic Forest 

studied. 

 

Figure 7. Root Mean Square Error (RMSE) and correlation of the machine learning models 
SVM, ANN and RF, in the modeling of the recruitment rates (A and B) and relative recruitment 
rates (C and D) in the in Atlantic Forest fragments in Minas Gerais, Brazil. 
 

 The Friedman test with the means of cross-validation RMSE showed that the predictions 

of recruitment rates in the Atlantic Forest differed between the techniques (p <0.05). Thus, the 

hypothesis that at least one average of one of the techniques differs from the others was 
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accepted. The Nemenyi test pointed out that the difference between the RF model and the other 

techniques was greater than the calculated critical difference (CD). The calculated critical 

difference (CD) of the ANN and SVM it was not significant to estimate recruitment rates in 

Atlantic Forest (Figure 8). 

 

 

 Figure 8. Nemenyi test of the machine learning models SVM, ANN and RF, in the modeling 

of the recruitment rates in the in Atlantic Forest fragments in Minas Gerais, Brazil. 

 

4. Discussion 

Modeling the tree recruitment is an important component for predictions of forest 

dynamics. However, sometimes, this component is neglected, due to the difficulty of 

forecasting and data availability. In our study, we found that the use of climate and 

anthropogenic variables, coupled with machine learning models (SVM, ANN and RF) can 

represent a promising approach to perform this task. 

We identify which climate variables (CWD, precipitation, temperature) are important 

for predicting annual recruitment rate (% year -1) and relative recruitment rate (% BA year-1) in 

Atlantic Forest fragments. Climatic factors are essential for predicting recruitment, as they 

regulate forest maintenance (Badano et al., 2015; Massad and Castigo, 2016). The 

establishment of successional tree species generally depends on specific light, temperature, and 

moisture conditions that occur in the forest understory (Badano et al., 2015; Benavides et al., 

2016). Recruitment biomass growth increases with soil water availability and light availability 
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and decreases under dry conditions (Esquivel-Muelbert et al., 2020; Sande et al., 2017). Any 

change in these environmental variables can prevent the recruitment of new individuals 

(Benavides et al., 2016). In addition, the demographic responses of these events can have 

varying timings (Aleixo et al., 2019), e.g.: drought-induced tree death in the Atlantic Forest can 

be detected 4 years after the drought event (Rocha et al., 2020). Therefore, it is important to 

consider temperature and precipitation averages from years before the measurement. 

Anthropogenic variables (land use history and forest cover), age of Abandonment and 

BA are also important predictors of recruitment. The dynamics of the highly degraded Brazilian 

Atlantic Forest is mostly driven by its anthropogenic context (Souza et al., 2021). While 

climatic conditions generate variation among regions, land use history plays a central role in 

driving alternative successional pathways in human-modified landscapes, (Jakovac et al., 

2021), especially in secondary Atlantic Forest forests (Sansevero et al., 2017), such as those 

studied here. 

Disturbances alter the course of forest dynamics and ecosystem services in the Atlantic 

Forest (Souza et al., 2021). Small variations in land use history, like selective logging of trees, 

can interfere with biotic interactions (Arroyo‐Rodríguez et al., 2017), affecting regeneration 

rates, vegetation structure, and species composition (Jakovac et al., 2021). Human interference 

in forest fragments, such as selective logging, promotes the opening of clearings and increase 

in BA per plot, resulting in competition for resources and this that can inhibit regeneration 

(Liebsch et al., 2021). In addition, the forest cover around the plots may be a source of seed 

trees. Distance to seed source habitat alters tree recruitment patterns (Muñiz-Castro et al., 2006; 

Toledo-Aceves et al., 2021), with compromised seed dispersal and greater seed predation in 

fragments, altered recruitment patterns in fragments are expected. 

We also observed an influence of landscape (altitude) on tree recruitment patterns in the 

Atlantic Forest. Trees need to have adequate soil and moisture conditions to regenerate 

(Clement et al., 2019). These conditions can vary spatially with latitude and altitude (Rogers 

and Mittanck, 2014). Topography restricts the local nutrients and hydraulic conditions within 

which trees grow (Jucker et al., 2018). Therefore, altimetric variables can affect resource 

availability and consequently tree recruitment. 

Using these variables, we found that machine learning methods were efficient and are 

important tools for modeling growth in forest fragments in the Brazilian Atlantic Forest. They 

can help in understanding the biome and in developing management strategies aimed at 

recovering biodiversity and reducing the deleterious effects of fragmentation. The Random 

Forest method showed superiority over the others for modeling growth in the Atlantic Forest. 
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The observed metrics and graphs and residuals corroborated this statement. This method 

produces the most accurate and stable predictions (Sun et al., 2019), being increasingly used in 

ecological studies because it is suitable for the analysis of large complex data sets (Reise et al., 

2019). As a non-parametric method, it benefits from its ability to take into account data 

variability and non-linear relationships Alternatively, parametric models are simpler and more 

widely known, and easier to share and explain (Leite et al., 2020). 

Finally, we observed that the use of machine learning (ANN, SVM, and RF) can be a 

promising way to accurately indicate tree recruitment in tropical forests, especially in the 

Brazilian Atlantic Forest. In addition, the use of climate, landscape, and land use history 

variables should be taken into consideration in models to predict this component of forest 

dynamics. Land use history defines successional pathways through impacts on various 

processes that define the availability of species for succession (Jakovac et al., 2021).  Thus, 

studies like this should be encouraged and can help in better understanding tree recruitment and 

assist in conservation practices in forests around the world, especially those threatened by 

human pressure and fragmentation. 

 

5. Conclusion 

We found out that climate, landscape, land use history and forest attributes are important 

variables to predict tree recruitment in the Atlantic Forest in Brazil. Machine Leaning are 

efficient methods to estimate recruitment rates at plot-level with these variables. Random Forest 

is more efficient in estimating. Our findings support a new approach for modeling tree 

recruitment in tropical forests around the world, especially in forest fragments of the Brazilian 

Atlantic Forest. This approach may represent improvement of future estimates in forest 

dynamics models. 
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Abstract 
Mortality models are essential to understand the dynamics of tropical forests. But modeling 

mortality in natural forests is not an easy task. Machine learning methods can help to solve this. 

In this study, we applied machine learning models, Artificial Neural Networks (ANN), Suport 

Vector Machine (SVM) and Random Forest (RF), to predict mortality at plot-level in the 

Atlantic Forest in Brazil. We calculated the mortality rate (M) and relative mortality rate (Mrel), 

% basal area (BA) year-1 at plot level. We used data from seven Atlantic Forest fragments 

located in Minas Gerais, Brazil. Forest attributes, land use history, landscape, soil and climatic 

characteristics were used in the modeling. Recursive Feature Elimination was used to select the 

best subset of predictor variables. We found out that climate (precipitation, climatic water 

deficit and temperature), anthropogenic variables (age of abandonment) and forest attributes 

(BA) are important variables to predict tree mortality in the Atlantic Forest in Brazil. RF showed 

the best performance to estimate the mortality rates, with the highest ryŷ and the lowest RMSE 

and MAE for all repetitions. ANN had the moderate performance to predict M and Mrel. The 

SVM had the worst performance for predicting the mortality in Atlantic Forest. The Friedman 

and Nemenyi nonparametric test confirm that the RF model is a powerful machine learning 

algorithm for predictions. Our results, they suggest a new alternative for modeling this 

important component of forest dynamics. 

Keywords: forest dynamics, mortality, tropical forest, Brazil. 

 

 

1.  Introduction 

Tropical forests deforestation has contributed to the formation of fragmented 

landscapes, composed mainly by a secondary forests matrix, grassland and agriculture (Santo-

Silva et al., 2016; Sousa et al., 2017). These changes in land use have caused many pressures 

on ecosystems  (Diniz et al., 2021; Melo et al., 2013). They affect not only the quantity of native 

vegetation, but also the spatial configuration and quality of the remaining forest through habitat 

fragmentation (Diniz et al., 2021; dos Santos et al., 2020; Haddad et al., 2015). This results in 

isolation of plant and/or animal populations, which increases the risks of inbreeding, genetic 

drift, and extinction (Dixo et al., 2009; dos Santos et al., 2020). 

In Brazil, the Atlantic Forest biome has been suffering from this process since 1500 

(Colombo and Joly, 2010). The Atlantic Forest is a global biodiversity hotspot (de Lima et al., 

2020; Macedo et al., 2021; Myers et al., 2000; Ribeiro et al., 2009). The biome has one of the 

highest species richness and endemism rates on the planet. The fragmentation of the biome has 
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meant that a large proportion of its vast biodiversity is threatened with extinction. (Ribeiro et 

al., 2009). 

In this context, knowledge and prediction of tree population dynamics can help mitigate 

Atlantic Forest degradation and preserve its remaining fragments. Forest dynamics are driven 

by the balance between four forest demographic changes: growth, recruitment, mortality, and 

forest composition (Pretzsch, 2009; Vanclay, 1994). These are important variables to consider 

in landscape planning and management for biodiversity conservation. 

Among these variables, tree mortality is a critical ecological phenomenon that shapes 

the dynamics, structure, and composition of the forest ecosystem, and its effects are of global 

relevance because of its relationship to forest conditions and environmental change (Salas-

Eljatib and Weiskittel, 2020; Synek et al., 2020). In addition, it plays a key role in the carbon 

storage capacity of forests. The carbon sink capacity of tropical forests is substantially affected 

by tree mortality (Esquivel-Muelbert et al., 2020). 

However, modeling tree mortality is challenging, especially in natural forests (Reis et 

al., 2018; Rocha et al., 2018; Ruiz-Benito et al., 2013; Vanoni et al., 2019). Mortality of 

individuals is highly uncertain and difficult to model (Salas-Eljatib and Weiskittel, 2020). Tree 

mortality can be affected by a variety of environmental, physiological, pathological, and 

entomological factors, as well as random events that are difficult to predict (Hallinger et al., 

2016; Hülsmann et al., 2016), making modeling difficult. Besides that, tree mortality remains 

poorly evaluated at the stand scale, particularly quantitatively, due to the lack of adequate tree 

mortality demographic data (Zhu et al., 2019). 

Modeling mortality requires choosing an appropriate approach to estimating the model 

parameters (Tavares Júnior et al., 2020). The two main methods used are regression models and 

machine learning techniques (Breiman, 2001), most commonly using artificial neural networks 

(ANN), followed by support vector regression (SVR) and random forests (RF) (Jachowski et 

al., 2013). The applications of this computational intelligence technique in the forestry area 

have gained high relevance (Bayat et al., 2019; Hamidi et al., 2021; Reis et al., 2018, 2016; 

Rocha et al., 2018; Tavares Júnior et al., 2020). These techniques have been used to improve 

local, regional and global estimates (Vahedi, 2016, Silva et al., 2019). 

The objective of the present study is to develop models of machine learning (Artificial 

Neural Networks - ANN, Support Vector Machine - SVM and Random Forest - RF) capable of 

estimating the mortality rates in Atlantic Forest fragments, based on forest attributes, land use 

history, landscape, soil and climatic characteristics. (i) What are the most important variables 

to estimate mortality in these forests? (ii) Are the machine learning methods evaluated efficient 
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for estimating the mortality rates at plot-level? (iii) What is the best method to estimate the 

mortality rates at plot-level? 

 

2. Material and methods 

2.1.Study sites and plot characteristics  

We used data from seven Atlantic forest fragments located in Minas Gerais, Brazil 

(Table 1 and Figure 1). The vegetation is classified as semideciduous seasonal forest (IBGE, 

2012). Across sites the annual rainfall varies from 701 to 1737 mm. year-1, elevation from 242 

to 1169 m above sea level, and slope from 2.97 to 65.81% (Table S1). 
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Figure 1. Locations of the seven studied Atlantic Forest fragments (FR) in Minas Gerais, Brazil. 
FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
 

We measured 104 plots located in seven forest fragments over several years (Table 1). 

In all plots, we measured and identified botanically all stems with diameter at breast height 

(dbh), 1.3 m ≥ 5 cm.  

 

Table 1. Overview of the seven studied Atlantic Forest fragments (FR) in Minas Gerais, Brazil. 
Forest fragments location (municipality), size, number and size of plots, and years of forest 
inventory are also provided  

Fragment Municipality 
Forest Size 

(ha) 
 Plots 

Plots 
size (ha) 

Measurement 

FR1 Guanhães 106.0 20 0.05 2002, 2007, 2012, 2017 

FR2 Viçosa 21.8 50 0.01 
1996, 1998, 2001, 2003, 

2013, 2018 
FR3 Caratinga 264.0 16 0.05 2002, 2007, 2012, 2017 
FR4 Caratinga 37.3 6 0.05 2002, 2007, 2012, 2017 
FR5 Viçosa 44.1 20 0.05 2010, 2015 

FR6 
Coronel 

Fabriciano 
38.4 12 0.05 2002, 2007, 2012, 2017 

FR7 Viçosa 17.0 10 0.10 
1994, 1997, 2000, 2004, 
2008, 2010, 2013, 2016 

FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
 

We calculated the mortality rate at plot level (van der Sande et al., 2017). The mortality 

rate (% year-1) was calculated as proposed by (Sheil et al., 1995) (Equation 1). 

 
M= (1-((N0-m)/N0)1

y) x100 
(1) 

Where:  

M - annual mortality rate, % year -1; 

N0 - number of individuals in the initial population; 

m - number of dead trees; 

y - time, years. 

 

As demographic processes may be influence by the total basal area of the plot (Breugel 

et al., 2019; Carreño‐Rocabado et al., 2012; Menezes and Melo, 2019; Rozendaal and Chazdon, 

2015).We calculated the basal area (BA) of each individual tree and measurement year to 

estimate the rate of mortality at plot level (van der Sande et al., 2017). Mortality is the basal 
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area of the stems alive on census tn, where t indicates the census in time n, but dead on the 

census tn + 1. Relative mortality rate was calculated (Lebrija-Trejos et al., 2010; Martínez-

Ramos et al., 2018) (Equation 2). 

 

 
Mrel = (1-((N0-m)/N0)1

y) x100 
(2) 

Where:  

Mrel - Relative mortality rate, % BA year-1; 

N0 - Basal area of the stems alive on census in the initial population; 

m - Basal area of mortality (m2); 

y - time, years. 

 

2.2. Forest attributes and Anthropogenic variables 

We use forest attributes from Atlantic Forest fragments as predictive variables. The 

attributes of the forest used were: Basal area of the plot and Number of stems. This information 

was collected through forest inventories carried out over the years. 

The Anthropogenic variables used to estimate tree mortality rates were: Land use 

history, forest cover, forest size and edge distance, age of abandonment (that means, time since 

abandonment previous anthropogenic uses). Based on information collected from aerial 

photographs (from around 1960, 1980 and 1990), Landsat satellite images from 1985, 

landowner interviews and land titles, we determined the Land use history and age of 

abandonment of the areas. The categories of land use used were: deforestation, agricultural 

production, eucalyptus plantation, and selective logging. 

Forest cover was calculated for each plot using circular buffers with radii of 500, 1000, 

and 2000 m, for the year 1985, 2002 and 2017, with data from MapsBiomas (MapBiomas 

Project, 2019) in ArcGIS 10.3.1 (ESRI, 2015). Forest cover area was produced from the pixel-

per-pixel (30 x 30 m) classification of Landsat satellite images through the Google Earth Engine 

platform (MapBiomas Project, 2019). We calculated distance to the nearest edge of the forest 

(edge distance) with near tool in ArcGIS 10.3.1 1 (ESRI, 2015). 

 

2.3.Climate variables 

We obtained annual precipitation, the number of months with less than 100 mm of 

rainfall, precipitation in the three driest months, and average annual temperature for each 

fragment from the nearest climatological station (Figure S1). We then estimated the climatic 
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water deficit (CWD) – a water balance between precipitation and evapotranspiration – as a 

proxy for drought conditions following Lutz et al. (2010) and using the R function CWD and 

AET (actual evapotranspiration) from Redmond (2019). 

We used slope, latitude, aspect, precipitation and temperature of the site for monthly 

calculations. AET as the evaporative water loss from a site covered by a hypothetical standard 

crop, given the prevailing water availability (Stephenson, 1998).  

CWD reflects drought conditions more accurately than total annual rainfall (Chave et 

al., 2014), and was consider anthropogenic variable. More negative CWD indicates high water 

stress conditions and values close to 0 (zero) indicates not water stressed (Poorter et al., 2017). 

We calculated the average of total annual precipitation and CWD for one, two, three and four 

years before the measurement year. 

 

2.4.Soil and topography variables 

Soil and topography can be useful to improve estimates of tree mortality and biomass 

losses over large areas (de Toledo et al., 2012). Thus, edaphic and topographic information was 

collected. 

We collect soil samples for each plot. We obtained information for the depths of 0-20 

cm and 20-40 cm. 20-30 samples were collected per plot to obtain a composite sample. Soil pH 

in H2O, exchangeable cations (Ca2+, Mg2+ and Al3+), total acidity (H++ Al3+), cation exchange 

capacity (CEC), base saturation (V), available phosphorus (P), P remaining in solution (P-res) 

and soil organic matter (SOM) were determined using standard methods (Teixeira et al., 2017). 

The soil analyses were performed at the laboratory of Soil Fertility at the Universidade Federal 

de Viçosa (UFV), Brazil. 

To account for differences in topography, we calculated for each plot the elevation, 

slope and aspect using Spatial Analyst Tools of surface in ArcGIS 10.3.1 1 (ESRI, 2015). We 

used the Shuttle Radar Topography Mission (SRTM) and Digital Elevation Models (DEMs) for 

the analysis. 

 

2.5.Data analyses 

2.5.1. Variables selection 

We performed tests to determine the variables to be included in the statistical models to 

assess the effect of anthropogenic and environmental variables (Table S1) on relative mortality. 
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Quantitative variables were standardized to accelerate the convergence rate and reduce 

the iteration process in training (Equation 3). The scale function of R Software was used in this 

step. 

Zi = (xi-𝑥̅)/σ 

 

(3) 

 

where: 

Zi = standardized value of the i-th observation; 

xi = value of the i-th observation;  𝑥̅ = average of the observed values; 

σ = standard deviation. 

 

First, we exclude highly correlated variables using a correlation coefficient limit of ± 

0.9 (Leite et al., 2020; Silva et al., 2016). Subsequently, a method based on Recursive Feature 

Elimination (RFE) (Gomes et al., 2019), was used, considering only the variables not excluded 

in the first step to select the best subset of variables. This method is a reverse selection algorithm 

that calculates the importance of the resource in each iteration, classifying them from most 

important to least important, removing a user-defined subset at each stage (Kuhn and Johnson, 

2013a, 2013b). Although resource collinearity cannot severely affect nonparametric methods, 

the exclusion of highly correlated methods was important to make RFE iterations more 

constant, as resources can be interchangeable within models (Leite et al., 2020). 

 

2.5.2. Model selection, evaluation, and inference 

The tested models to estimate the mortality rates were: Support Vector Machines 

(SVM), Artificial Neural Networks (ANN) and Random Forests (RF). 

The trained ANN was the multilayer perceptron, also known as the multilayer 

perceptron (MLP), with a hidden layer. The range of neurons in this layer was defined by the 

Fletcher-Gloss method (Silva et al., 2010): 2 × n0.5 + n2 ≤ n1 ≤ 2 × n + 1; where n = number 

of network inputs; n1 = amount of neurons in the hidden layer; and n2 = number of neurons in 

the output layer. The activation functions tested were exponential, identity, logistic, and 

hyperbolic tangent. The training algorithms used were resilient propagation (Rprop) and scaled 

conjugate gradient (SCG). The initial ANN weights were randomly generated, and the 

maximum number of iterations was 100 due to the error becoming constant before this number. 

The ANNs were implemented with the MLP function of the “RSNNS” Package in R (Bergmeir 
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and Benítez, 2012). The function SVM of the “e1071” Package on R was used for training 

SVMs. Thus, four configurations were used in the SVR training, represented by four kernel 

functions: Linear, Polynomial, Radial basis and Sigmoid. 

In the RF training, three essential parameters were configured: the number of random 

regression trees (ntree, tested 20 to 100 trees); the number of division variables (mtry, used to 

determine the number of variables available to each node of the tree, with the default number 

of 1/3 of the independent variables); and the minimum size of nodes (node size, value = 5).  

The performance of the models in the estimation was assessed using the k–fold cross-

validation method, with the data divided into 5 folds (4 for adjustments/training and 1 for 

validation). At each adjustment/training of the folds the metrics of Root Mean Square Error – 

RMSE (Equation 4); Mean Absolute Error – MAE (Equation 5), Pearson correlation coefficient 

- 𝑟𝑦𝑦̂ (Equation 6); BIAS (Equation 7) and Relative Bias (%) (Equation 8) were calculated. This 

process was repeated 50 times, obtaining the average of the metrics for comparison of all 

models. The data were selected randomly in each of the 50 repetitions, resulting in different 

data sets, for greater robustness of the evaluation. 

𝑅𝑀𝑆𝐸 =  √∑ ∑ (𝑋𝑖 − 𝑋̂𝑖)²𝑛𝑖=1 𝑛𝑅
𝑟=1  (4) 

 

𝑀𝐴𝐸 =  ∑ |∑ (𝑋𝑖 − 𝑋̂𝑖)𝑛𝑖=1 |𝑛𝑅
𝑟=1  

(5) 

 𝑟𝑦𝑦̂ =  𝑐𝑜𝑣(𝑋, 𝑋̂)√𝑠2(𝑋) × 𝑠2(𝑋̂) 

 

(6) 

 𝐵𝑖𝑎𝑠 =  (∑ 𝑋𝑖 − 𝑋̂𝑖𝑛𝑖 )𝑛  

 

(7) 

 𝑟𝐵𝑖𝑎𝑠 (%) =  𝐵𝑖𝑎𝑠𝑋̅ × 100 

 

(8) 

Where: 
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n = number of observations; 𝑋𝑖  = observed variable from the i-th plot; 𝑋̂𝑖  = estimated variable of the i-th plot.  

 

The averages of RMSE, EAM, 𝑟𝑦𝑦̂  and Bias of each method in each repetition were 

ranked with weight assignments from 1 to 3, with 1 for the lowest value and 3 for the highest 

value. With the result of these sums, the values were submitted to the Friedman – Nemenyi test, 

at the 5% significance level (Equation 9). 

The Friedman and Nemenyi nonparametric tests were used to compare ANN, SVR, and 

RF, based on the cross-validation RMSE, EAM, r and Bias means. The null hypothesis of 

Friedman's test is that all algorithms are equivalent. Nemenyi's post hoc test is applied to report 

significant differences between the techniques if the null hypothesis is rejected. The techniques' 

performance differs when the mean RMSE by at least one calculated critical difference (CD) 

differs (Tavares Júnior et al., 2020). 

𝐶𝐷 = 𝑞𝛼√𝑘(𝑘 + 1)6𝑁  (9) 

Where: 

CD = critical difference; 𝑞𝛼  = critical value calculated based on Studentized interval statistics divided by √2; 

k = number of algorithms being compared; 

N = number of data sets. 

In total, 120 ANNs, 161 RFs and 8 SVM were trained for all fragments for estimate 

annual mortality rate and relative mortality rate of the Brazilian Atlantic Forest. The 

methodological flowchart used is presented below (Figure 2). 
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Figure 2. Methodological flowchart for modeling tree mortality rates in Atlantic forest in Brazil. 

3. Results 

The applied variable selection procedure allowed the choice of the best model based on 

the ideal subset of variables. We found that BA, age of abandonment, CWD, mean annual 

precipitation (2 and 4 years before measurement), mean annual temperature 1 year before 

measurement and total precipitation of the three driest months were the most important 

variables to predict the annual mortality rate of trees in the Atlantic Forest (Figure 3). 
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Figure 3. Most important variables for modeling the mortality rate (M) of studied Atlantic 
Forest fragments in Minas Gerais, Brazil. BA: basal area; Age_Aban: age of Abandonment; 
CWD: climatic water deficit (from 1989 to 1 year before measurement); Precp_2: mean annual 
precipitation (1 and 2 years before measurement); Temp: mean annual temperature 1 year 
before measurement; Precp_4: mean annual precipitation (1, 2, 3 and 4 years before 
measurement); Precp_dry: total precipitation of the three driest months. 
 

The variables BA - plots, mean annual temperature 1 year before measurement and total 

precipitation of the three driest months were the most important in predicting the relative 

mortality rates in BA (Figure 4). 
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Figure 4. Most important variables for modeling the relative mortality rate (Mrel) of studied 
Atlantic Forest fragments in Minas Gerais, Brazil. BA: basal area; Temp: mean annual 
temperature 1 year before measurement and Precp_dry: total precipitation of the three driest 
months. 
 

In general, the evaluated models showed a satisfactory generalization power, indicated 

by similar precision results between the observed and estimated data in the validation for all 

variables studied (Figure 5 and 6). 
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Figure 5. Observed and predicted and residuals values of mortality rate (M) for the different 
machine learning models, SVM, ANN and RF tested in Atlantic Forest fragments in Minas 
Gerais, Brazil. Colors represent the areas. Each small point represents the plots by areas. FR1: 
Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; FR5: 
Centev; FR6: São José and FR7: Mata da Silvicultura. 

 



59 
 

 

 

Figure 6. Observed and predicted and residuals values of relative mortality rate (Mrel) for the 
different machine learning models, SVM, ANN and RF tested in Atlantic Forest fragments in 
Minas Gerais, Brazil. Colors represent the areas. Each small point represents the plots by areas. 
FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
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RF showed the best performance to estimate the mortality trees, with the highest ryŷ and 

the lowest RMSE and MAE for all repetitions (Table 3). ANN had the moderate performance 

to predict M and Mrel. The SVM had the worst performance for predicting the mortality in 

Atlantic Forest.
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Table 3. Statistics of the machine learning models, SVM, ANN and RF tested in Atlantic Forest fragments in Minas Gerais, Brazil 

 
Type 

 
Input Output Technique Neur./Trees Algorithm Function RMSE EAM r Bias 

Train 

BA, Age Aban, 
CWD, Precp2, 
Temp, Precp4, 

Precp_dry 

M 

RF 46   1.201±0.163 0.844±0.083 0.82±0.042 -1.804±5.643 
ANN 9 SCG Exponential 1.416±0.165 1.042±0.095 0.738±0.052 -7.541±6.421 

SVM   Radial 1.508±0.248 0.988±0.114 0.722±0.06 10.675±5.692 

Test 

BA, Age Aban, 
CWD, Precp2, 
Temp, Precp4, 

Precp_dry 

M 

RF 46   1.211±0.042 0.844±0.021 0.819±0.011 -1.467±1.405 
ANN 9 SCG Exponential 1.424±0.041 1.042±0.024 0.738±0.052 -7.541±6.421 

SVM   Radial 1.527±0.062 0.988±0.028 0.721±0.015 11.058±1.433 

Train 
BA, Temp, 
Precp_dry 

Mrel 
RF 69   1.238±0.158 0.84±0.089 0.829±0.066 -1.562±6.334 

ANN 6 SCG Exponential 1.768±0.216 1.213±0.123 0.598±0.11 -3.601±9.557 
SVM   Radial 1.848±0.309 1.138±0.141 0.58±0.103 18.392±7.117 

Test 
BA, Temp, 
Precp_dry 

Mrel 
RF 69   1.248±0.04 0.84±0.022 0.837±0.016 -1.109±1.55 

ANN 6 SCG Exponential 1.78±0.054 1.213±0.031 0.598±0.11 -3.601±9.557 
SVM   Radial 1.872±0.076 1.138±0.035 0.584±0.025 18.946±1.726 

Where: RMSE: Root Mean Square Error; MAE: mean absolute error; SVM: Support Vector Machine; ANN: Artificial Neural Networks; RF: 
Random Forest. SCG: Scaled Conjugate Gradient. BA: Basal area; Age_Aban: Age of Abandonment; CWD: Climatic water deficit (from 1989 to 
1 year before measurement); Precp_2: Mean annual precipitation (1 and 2 years before measurement); Temp: Mean annual temperature 1 year 
before measurement; Precp_4: Mean annual precipitation (1, 2, 3 and 4 years before measurement); Precp_dry: Total precipitation of the three 
driest months.
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The means of RMSE and Correlation varied over the repetitions for each technique. The 

RMSE averages of RF, over the 50 repetitions in the cross-validation, showed the lowest values 

to estimate the mortality of trees and the highest values of Correlation (Figure 7) for all variables 

evaluated in the present study. 

 

Figure 7. Root Mean Square Error (RMSE) and Correlation of the machine learning models 
SVM, ANN and RF, in the modeling of the mortality rates (A and B) and relative mortality 
rates (C and D) in the in Atlantic Forest fragments in Minas Gerais, Brazil. 
 

The Nemenyi test pointed out that the difference between the RF model and the other 

techniques was greater than the calculated critical difference (CD). The calculated critical 

difference (CD) of the ANN and SVM it was not significant to estimate mortality rates in 

Atlantic Forest (Figure 8). 
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 Figure 8. Nemenyi test of the machine learning models SVM, ANN and RF, in the modeling 

of the mortality rates in the in Atlantic Forest fragments in Minas Gerais, Brazil. 

 

4. Discussion 

Mortality models are recognized as key components for projecting forest ecosystem 

dynamics, structure, and composition (Salas-Eljatib and Weiskittel, 2020). However, in many 

ecosystems, obtaining an accurate estimate of mortality remains a challenge due to the 

interaction of several factors and the scarcity of data (Bayat et al., 2019). In this study, we 

obtained models for three of the most commonly used machine learning techniques (ANN, SVR 

e RF). The study has shown that modeling mortality at the stand level can be approached using 

climate and forest attributes. 

Our results suggest that the survival is a function of Climate variables, BA and Age of 

Abandonment. Forest dynamics is the process of recruitment, growth, death, and renewal of the 

constituent tree species of the forest community. These processes are driven by natural and 

anthropogenic disturbances (McDowell et al., 2020).  

The basal area is important to model mortality, as it is associated with competition. 

Annual tree mortality rates vary with forest composition and tree size structure (Sheil et al., 

1995; Vanoni et al., 2019). Age of Abandonment reflect the stage of forest succession and the 

probability of survival, as they integrate many environmental influences (Dobbertin, 2005; 

Esquivel-Muelbert et al., 2020; Vanoni et al., 2019). Allied to these variables, the climate plays 
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a fundamental role. The mortality of trees in tropical forests can be affected by the interaction 

of climate and the ecological characteristics of the trees (Phillips et al., 2010). For example, 

mortality rates tend to be higher for fast-growing early successional and softwood species 

because they have more acquisitive and less secure lifestyles, shorter life expectancy, and their 

wood is physically less protected against wind and pathogens (Aleixo et al., 2019). 

Climate variables, like the ones observed, (CWD, Mean annual precipitation (2 and 4 

years before measurement), Mean annual temperature 1 year before measurement and Total 

precipitation of the three driest months) are related to tree death (Aleixo et al., 2019; Meir et 

al., 2015; Seidl et al., 2017), especially in the Brazilian Atlantic Forest (Rocha et al., 2020). 

Mortality is affected by competition for resources (light, water, nutrient). Under conditions of 

resource scarcity, suppressed trees die by carbon deficit, hydraulic failure, or biotic attack as a 

result of reduced light, water, and nutrients due to increased competition (McDowell et al., 

2018). Studies suggest that the timing of responses to weather events are not immediate, and 

that this can occur up to 6 years after the event (Seidl et al., 2017). 

Our results confirm that the Random Forests model is a powerful machine learning 

algorithm for predictions. The prediction statistics (Table 4) show no overfitting, as the R2 of 

the training and validation sets are similar. O RMSE e o MAE corroborate this assertion, 

showing small differences in training and validation. This method produces the most accurate 

and stable predictions (Sun et al., 2019), being increasingly used in ecological studies because 

it is suitable for the analysis of large complex data sets (Reise et al., 2019). 

Observed, predicted and residuals plots suggest a difficulty in modeling in areas with 

higher mortality rates. This may be related to the type of mortality. One of the problems in 

modeling mortality is that several random factors can cause the death of trees (Reis et al., 2018). 

Tree mortality is a complex process that results from an interaction between regular mortality 

(due to competition and senescence) and catastrophic mortality due to extreme weather events 

and/or insect outbreaks (which are often induced by other disturbances) (Csilléry et al., 2013; 

Hawkes, 2000). Therefore, in these areas, high rates may be related to catastrophic events that 

are difficult to predict. 

The inference and robustness of mortality predictions depend heavily on the modeling 

strategy (Salas-Eljatib and Weiskittel, 2020). The different configurations of the tested models 

showed that ANN requires a larger number of parameter settings. This is a disadvantage of this 

technique (Dernoncourt and Lee, 2016). SVR and RF, on the other hand, are easier to use, 

because few hyperparameters need to be set by the user (Ao et al., 2019; Tavares Júnior et al., 

2020). 
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Finally, we found that the use of machine learning models can generate promising 

results in mortality estimates in natural forests. The future development of forest ecosystems 

depends critically on tree mortality (Hülsmann et al., 2017) Our study, presents a new way to 

do this, especially in forest fragments of the Atlantic Forest. It is worth noting that new 

approaches such as including other variables and using other models (e.g.: Cubist, Regression 

Trees Models, etc.) can improve the estimates. Studies of this kind should be encouraged and 

can help in better understanding tree mortality and assist in conservation practices in forests 

around the world, especially those threatened by human pressure and fragmentation. 

 

5. Conclusion 

We found out that Climate variables (Precipitation, Climatic water deficit and 

Temperature), Age of Abandonment and Basal area are important variables to predict tree 

mortality in the Atlantic Forest in Brazil. Machine Leaning are efficient methods to estimate 

mortality rates at plot-level with these variables. Random Forest is more efficient in estimating. 

Our findings support a new approach for modeling tree mortality in tropical forests around the 

world, especially in forest fragments of the Brazilian Atlantic Forest. 
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CAPÍTULO III: Comparison of machine learning methods in net growth estimates in 

the Atlantic Forest of Brazil 
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Abstract 
Tree growth models are an important and essential part of modeling forest dynamics and 

valuable tools for management planning and biodiversity conservation strategies. We applied 

machine learning models, Artificial Neural Networks (ANN), Suport Vector Machine (SVM) 

and Random Forest (RF), to predict tree growth at plot-level in the Atlantic Forest of Brazil. 

Forest attributes, land use history, landscape, soil and climatic characteristics were used in the 

modeling. Recursive Feature Elimination was used to select the best subset of predictor 

variables. We found that edaphic, forest attributes and climatic variables are important in 

shaping growth in the Brazilian Atlantic Forest. Soil acidity was the most important 

characteristic. The machine learning methods were efficient. The Random Forest method 

showed superiority over the others for modeling growth in the Atlantic Forest. The Nemenyi 

test pointed out that the difference between the RF model and the other techniques was greater 

than the calculated critical difference (CD). Machine learning can be an important tool for 

modeling growth in forest fragments in the Brazilian Atlantic Forest. They can help in 

understanding the biome and in developing management strategies aimed at recovering 

biodiversity and reducing the deleterious effects of fragmentation. 

Keywords: forest dynamics, net growth, tropical forest, Brazil. 

 

1. Introduction 

Biodiversity hotspots are among habitats most threatened by climate change around the 

world, and the Brazilian Atlantic Forest is a case in point (Scarano and Ceotto, 2015). The 

Atlantic Forest is classified as one of the 3 biodiversity hotspots most vulnerable to climate 

change (Bellard et al., 2014). The biome has a rich biodiversity (de Lima et al., 2015; Joly et 

al., 2014; Myers et al., 2000) and provides various ecosystem services, such as water supply, 

climate balance, food production, timber assortment and medicines, which contribute to human 

well-being (Bullock et al., 2011; Melo et al., 2013). Despite providing several environmental 

services to society, this is the Brazilian biome that has suffered most from fragmentation (Lewis 

et al., 2015; Magnago et al., 2014). 

The biome is located in areas of intense urbanization, industrialization and agricultural 

activities (Scarano and Ceotto, 2015). The Atlantic Forest is the most threatened biome in 

Brazil. The area of the biome has reduced to about 12,4% of its original cover (SOS Mata 

Atlântica, 2019). Fragmentation directly impacts biodiversity (Haddad et al., 2015), plant and 

animal structure and composition (Câmara et al., 2017), microclimate (Schmidt et al., 2017), 

seed dispersal (Emer et al., 2018) and population dynamics (Arroyo‐Rodríguez et al., 2017). 
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Monitoring forest dynamics in these fragmented areas is important to determine how 

tropical forests respond to land use and cover changes and global climate change (Bustamante 

et al., 2016). Forest dynamics arise from the interaction of environmental factors and 

disturbances with the demographic processes of recruitment, growth, and mortality, 

subsequently driving biomass and species composition (McDowell et al., 2020; Xu et al., 2016). 

Net growth is the result of the three components of forest dynamics. Tree growth models 

are basic and essential components of forest dynamics modeling and valuable tools for forest 

management planning at any level (Uzoh and Oliver, 2008). Developing and validating these 

models can provide a better understanding of the tree growth and increment causes and 

mechanisms and predict the condition of plants at future times (Huy et al., 2021; Ma and Lei, 

2015). 

There is a large amount of literature on growth modeling forest plantation, however, 

many of the modeling approaches for such forests are not applicable to stands with multiple 

tree species and age groups (Vanclay, 1994). Mixed tropical forests present a special challenge 

because of the diversity of species and a wide range of sizes and ages (Huy et al., 2021). 

Due to this complexity, machine learning models may represent a promising approach 

to this task Machine learning is a rapidly growing area of study that should become more 

common for modeling forest dynamics because of its potential to produce better models than 

traditional data modeling approaches (Gleason and Im, 2012; Jachowski et al., 2013; Reis et 

al., 2018, 2016; Rocha et al., 2018; Tavares Júnior et al., 2020; Zhao et al., 2011). 

The objective of the present study was to develop models of machine learning capable 

of estimating the net growth in Atlantic Forest fragments, based on Forest Attributes, Land use 

history, Landscape, Soil and Climatic characteristics. (i) What are the most important variables 

to estimate net growth in these forests? (ii) Are the machine learning methods evaluated 

efficient for estimating the net growth at plot-level? (iii) What is the best method to estimate 

the net growth at plot-level? 

 

2. Material and methods 

2.1. Study sites and plot characteristics  

We used data from seven Atlantic Forest fragments located in Minas Gerais, Brazil 

(Table 1 and Figure 1). The vegetation is classified as semideciduous seasonal forest (IBGE, 

2012). Across sites the annual rainfall varies from 701 to 1737 mm. year-1, elevation from 242 

to 1169 m above sea level, and slope from 2.97 to 65.81% (Table S1). 
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Figure 1. Locations of the seven studied Atlantic Forest fragments (FR) in Minas Gerais, Brazil. 
FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
 

We measured 104 plots located in seven forest fragments over several years (Table 1). 

In all plots, we measured and identified botanically all stems with  diameter at breast height 

(dbh), 1.3 m ≥ 5 cm. 

 

Table 1. Overview of the seven studied Atlantic Forest fragments in Minas Gerais, Brazil. 
Forest fragments location (municipality), size, number and size of plots, and years of forest 
inventory are also provided 

Fragment Municipality 
Forest Size 

(ha) 
 Plots 

Plots 
Size (ha) 

Measurement 
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FR1 Guanhães 106.0 20 0.05 2002, 2007, 2012, 2017 

FR2 Viçosa 21.8 50 0.01 
1996, 1998, 2001, 2003, 

2013, 2018 
FR3 Caratinga 264.0 16 0.05 2002, 2007, 2012, 2017 
FR4 Caratinga 37.3 6 0.05 2002, 2007, 2012, 2017 
FR5 Viçosa 44.1 20 0.05 2010, 2015 

FR6 
Coronel 

Fabriciano 
38.4 12 0.05 2002, 2007, 2012, 2017 

FR7 Viçosa 17.0 10 0.10 
1994, 1997, 2000, 2004, 
2008, 2010, 2013, 2016 

FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; 
FR5: Centev; FR6: São José and FR7: Mata da Silvicultura. 
 

As demographic processes may be influence by the total basal area of the plot (Carreño‐

Rocabado et al., 2012; Rozendaal and Chazdon, 2015). We calculated the basal area (BA) of 

each individual tree and measurement year to estimate the rate of mortality, recruitment and 

survivor growth at plot level (van der Sande et al., 2017). 

Mortality is the BA of the stems alive on census tn, where t indicates the census in time 

n, but dead on the census tn + 1. Recruitment is the BA of stems that reached the minimum 

diameter for inclusion (dbh ≥ 5 cm) in census tn + 1. Survivor growth was considered as the 

basal area increment due to the growth of surviving stems during a measurement period. Then, 

net growth was calculated summing recruitment and growth, and subtracting mortality. 

 

2.2. Forest attributes and Anthropogenic variables 

 

We use forest attributes from Atlantic Forest fragments as predictive variables. The 

attributes of the forest used were: Basal area of the plot and Number of stems. This information 

was collected through forest inventories carried out over the years. 

The Anthropogenic variables used to estimate tree growth rate were: Land use history, 

forest cover, forest size and edge distance, age of abandonment (that means, time since 

abandonment previous anthropogenic uses). Based on information collected from aerial 

photographs (from around 1960, 1980 and 1990), Landsat satellite images from 1985, 

landowner interviews and land titles, we determined the Land use history and age of 

abandonment of the areas. The categories of land use used were: deforestation, agricultural 

production, eucalyptus plantation, and selective logging. 

Forest cover was calculated for each plot using circular buffers with radii of 500, 1000, 

and 2000 m, for the year 1985, 2002 and 2017, with data from MapsBiomas (MapBiomas 
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Project, 2019) in ArcGIS 10.3.1 (ESRI, 2015). Forest cover area was produced from the pixel-

per-pixel (30 x 30 m) classification of Landsat satellite images through the Google Earth Engine 

platform (MapBiomas Project, 2019). We calculated distance to the nearest edge of the forest 

(Edge distance) with near tool in ArcGIS 10.3.1 1 (ESRI, 2015). 

 

2.3. Climate variables 

We obtained annual precipitation, the number of months with less than 100 mm of 

rainfall, precipitation in the three driest months, and average annual temperature for each 

fragment from the nearest climatological station (Figure S1). We then estimated the climatic 

water deficit CWD (a water balance between precipitation and evapotranspiration) as a proxy 

for drought conditions following Lutz et al. (2010) and using the R function CWD and AET 

(actual evapotranspiration) from Redmond (2019). 

We used slope, latitude, aspect, precipitation and temperature of the site for monthly 

calculations. AET as the evaporative water loss from a site covered by a hypothetical standard 

crop, given the prevailing water availability (Stephenson, 1998).  

 CWD reflects drought conditions more accurately than total annual rainfall (Chave et 

al., 2014), and was consider anthropogenic variable. More negative CWD indicates high water 

stress conditions and values close to 0 (zero) indicates not water stressed (Poorter et al., 2017). 

We calculated the average of total annual precipitation and CWD for one, two, three and four 

years before the measurement year.  

 

2.4. Soil and topography variables 

We collect soil samples for each plot. We obtained information for the depths of 0-20 

cm and 20-40 cm. 20-30 samples were collected per plot to obtain a composite sample. Soil pH 

in H2O, exchangeable cations (Ca2+, Mg2+ and Al3+), total acidity (H++ Al3+), cation exchange 

capacity (CEC), base saturation (V), available phosphorus (P), P remaining in solution (P-res) 

and soil organic matter (SOM) were determined using standard methods (Teixeira et al., 2017). 

The soil analyses were performed at the laboratory of Soil Fertility at the Universidade Federal 

de Viçosa (UFV), Brazil. 

To account for differences in topography, we calculated for each plot the elevation, 

slope and aspect using Spatial Analyst Tools of surface in ArcGIS 10.3.1 1 (ESRI, 2015). We 

used the Shuttle Radar Topography Mission (SRTM) and Digital Elevation Models (DEMs) for 

the analysis. 
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2.5.Data analyses 

2.5.1. Variables selection 

We performed tests to determine the variables to be included in the statistical models to 

assess the effect of anthropogenic and environmental variables (Table S1) on growth. 

Quantitative variables were standardized to accelerate the convergence rate and reduce the 

iteration process in training (Equation 1). The scale function of R Software was used in this 

step. 

Zi = (xi-𝑥̅)/σ 

 

(1) 

 

where:  

Zi = standardized value of the i-th observation;  

xi = value of the i-th observation;  𝑥̅ = average of the observed values; 

 σ = standard deviation.  

 

First, we exclude highly correlated variables using a correlation coefficient limit of ± 

0.9 (Leite et al., 2020; Silva et al., 2016). Subsequently, a method based on Recursive Feature 

Elimination (RFE) (Gomes et al., 2019), was used, considering only the variables not excluded 

in the first step to select the best subset of variables. This method is a reverse selection algorithm 

that calculates the importance of the resource in each iteration, classifying them from most 

important to least important, removing a user-defined subset at each stage (Kuhn and Johnson, 

2013a, 2013b). Although resource collinearity cannot severely affect nonparametric methods, 

the exclusion of highly correlated methods was important to make RFE iterations more 

constant, as resources can be interchangeable within models (Leite et al., 2020). 

 

2.5.2. Model selection, evaluation, and inference 

The tested models to estimate the growth rates were: Support Vector Machines (SVM), 

Artificial Neural Networks (ANN) and Random Forests (RF). 

The trained ANN was the multilayer perceptron, also known as the multilayer 

perceptron (MLP), with a hidden layer. The range of neurons in this layer was defined by the 

Fletcher-Gloss method (Silva et al., 2010): 2 × n0.5 + n2 ≤ n1 ≤ 2 × n + 1; where n = number 

of network inputs; n1 = amount of neurons in the hidden layer; and n2 = number of neurons in 
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the output layer. The activation functions tested were exponential, identity, logistic, and 

hyperbolic tangent. The training algorithms used were resilient propagation (Rprop) and scaled 

conjugate gradient (SCG). The initial ANN weights were randomly generated, and the 

maximum number of iterations was 100 due to the error becoming constant before this number. 

The ANNs were implemented with the MLP function of the “RSNNS” Package in R (Bergmeir 

and Benítez, 2012). The function svm of the “e1071” Package on R was used for training SVMs. 

Thus, four configurations were used in the SVR training, represented by four kernel functions: 

Linear, Polynomial, Radial basis and Sigmoid. 

In the RF training, three essential parameters were configured: the number of random 

regression trees (ntree, tested 20 to 100 trees); the number of division variables (mtry, used to 

determine the number of variables available to each node of the tree, with the default number 

of 1/3 of the independent variables); and the minimum size of nodes (node size, value = 5).  

The performance of the models in the estimation was assessed using the k–fold cross-

validation method, with the data divided into 5 folds (4 for adjustments/training and 1 for 

validation). At each adjustment/training of the folds the metrics of Root Mean Square Error – 

RMSE (Equation 2); Mean Absolute Error – MAE (Equation 3), Pearson correlation coefficient 

- 𝑟𝑦𝑦̂ (Equation 4); BIAS (Equation 5) and Relative Bias (%) (Equation 6) were calculated. This 

process was repeated 50 times, obtaining the average of the metrics for comparison of all 

models. The data were selected randomly in each of the 50 repetitions, resulting in different 

data sets, for greater robustness of the evaluation. 

𝑅𝑀𝑆𝐸 =  √∑ ∑ (𝑋𝑖 − 𝑋̂𝑖)²𝑛𝑖=1 𝑛𝑅
𝑟=1  (2) 

 𝑀𝐴𝐸 =  ∑ |∑ (𝑋𝑖 − 𝑋̂𝑖)𝑛𝑖=1 |𝑛𝑅
𝑟=1  

(3) 

 𝑟𝑦𝑦̂ =  𝑐𝑜𝑣(𝑋, 𝑋)√𝑠2(𝑋) × 𝑠2(𝑋̂) 

 

(4) 

 𝐵𝑖𝑎𝑠 =  (∑ 𝑋𝑖 − 𝑋̂𝑖𝑛𝑖 )𝑛  

 

(5) 

 𝑟𝐵𝑖𝑎𝑠 (%) =  𝐵𝑖𝑎𝑠𝑋̅ × 100 
(6) 
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Where:  

n = number of observations; 

 𝑋𝑖 = observed variable from the i-th plot; 

 𝑋̂𝑖 = estimated variable of the i-th plot.  

 

The averages of RMSE, EAM, 𝑟𝑦𝑦̂  and Bias of each method in each repetition were 

ranked with weight assignments from 1 to 3, with 1 for the lowest value and 3 for the highest 

value. With the result of these sums, the values were submitted to the Friedman – Nemenyi test, 

at the 5% significance level (Equation 7). 

The Friedman and Nemenyi nonparametric tests were used to compare ANN, SVR, and 

RF, based on the cross-validation RMSE, EAM, r and Bias means. The null hypothesis of 

Friedman's test is that all algorithms are equivalent. Nemenyi's post hoc test is applied to report 

significant differences between the techniques if the null hypothesis is rejected. The techniques' 

performance differs when the mean RMSE by at least one calculated critical difference (CD) 

differs (Tavares Júnior et al., 2020). 

𝐶𝐷 = 𝑞𝛼√𝑘(𝑘 + 1)6𝑁  (7) 

Where:  

CD = critical difference; 

 𝑞𝛼 = critical value calculated based on Studentized interval statistics divided by √2; 

 k = number of algorithms being compared;  

N = number of data sets. 

 

In total, 64 ANNs, 80 RFs and 4 SVM were trained for all fragments for estimate annual 

growth rate of the Brazilian Atlantic Forest. The methodological flowchart used is presented 

below (Figure 2). 
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Figure 2. Methodological flowchart for modeling tree growth in Atlantic Forest in Brazil. 

3. Results  

We found that pH H2O 20cm - 40 cm, BA, Age of Abandonment, annual precipitation, 

mean annual precipitation, and total precipitation of the three driest months were the most 

important variables to predict the net growth of trees in the Atlantic Forest (Figure 3). 
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Figure 3. Most important variables for modeling the net growth of studied Atlantic Forest 
fragments in Minas Gerais, Brazil. pH_H20_20_40: pH H2O 0cm - 40 cm; BA: Basal area; 
Age_Aban: Age of Abandonment; Precp: Annual precipitation; Precp_avrg: Mean annual 
precipitation; Precp_dry: Total precipitation of the three driest months. 
 

In general, the evaluated models showed a satisfactory generalization power, indicated 

by similar precision results between the observed and estimated data in the validation for all 

variables studied (Figure 4). 
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Figure 4. Observed and predicted and residuals values of M for the different machine learning 
models, SVM, ANN and RF tested in Atlantic Forest fragments in Minas Gerais, Brazil. Colors 
represent the areas. Each small point represents the plots by areas. FR1: Cachoeira das Pombas; 
FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; FR5: Centev; FR6: São José 
and FR7: Mata da Silvicultura. 
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RF showed the best performance to estimate net growth, with the highest ryŷ and the 

lowest RMSE and MAE for all repetitions (Table 3). ANN had the moderate performance to 

predict the growth. The SVM had the worst performance for predicting the net growth in 

Atlantic Forest.
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Table 3. Statistics of the machine learning models, SVM, ANN and RF tested in Atlantic Forest fragments in Minas Gerais, Brazil 

 
Tipo 

 
Input Output Technique Neur./Trees Algorithm Function RMSE EAM r Bias 

Train 

pH_H20_20_40, 
BA, Age_Aban, 

Precp, 
Precp_avrg and 

Precp_dry 

Net 
growth 

RF 37   0.571±0.073 0.409±0.042 0.854±0.039 0.95±2.847 
ANN 7 Rprop Tangencial 0.742±0.079 0.548±0.049 0.717±0.058 0.001±3.493 

SVM   Radial 0.775±0.106 0.518±0.061 0.699±0.059 4.99±3.635 

Test 

pH_H20_20_40, 
BA, Age_Aban, 

Precp, 
Precp_avrg and 

Precp_dry 

Net 
growth 

RF 37   0.575±0.019 0.409±0.011 0.855±0.009 1.06±0.717 
ANN 7 Rprop Tangencial 0.746±0.02 0.548±0.012 0.717±0.058 0.001±3.493 

SVM   Radial 0.782±0.027 0.518±0.015 0.698±0.015 5.139±0.915 

Where: RMSE: Root Mean Square Error; MAE: mean absolute error; SVM: Support Vector Machine; ANN: Artificial Neural Networks; RF: 
Random Forest. Rprop: Resilient backpropagation. pH_H20_20_40: pH H2O 0cm - 40 cm; BA: Basal area; Age_Aban: Age of Abandonment; ; 
Precp: Annual precipitation; Precp_avrg: Mean annual precipitation; Precp_dry: Total precipitation of the three driest months.
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The means of RMSE, MAE, Correlation and Relative Bias varied over the repetitions 

for each technique. RF showed the lowest values of RMSE (Figure 5-A) and MAE (Figure 5-

B) and highest values of correlation (Figure 5-C) to estimate net growth of trees in the cross-

validation. The RNA showed the lowest values of relative Bias (Figure 5-D). 

 

Figure 5. Root Mean Square Error – RMSE (A), Mean Absolute Error – MAE (B), Correlation 
(C) and Relative Bias (D) of the machine learning models SVM, ANN and RF, in the modeling 
of the net growth in the in Atlantic Forest fragments in Minas Gerais, Brazil. 
 

The Friedman test with the means of cross-validation RMSE showed that the predictions 

of net growth in the Atlantic Forest differed between the techniques (p <0.05). The Nemenyi 

test pointed out that the difference between the RF model and the other techniques was greater 
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than the calculated critical difference (CD). The calculated critical difference (CD) of the ANN 

and SVM it was not significant to estimate net growth in Atlantic Forest (Figure 6). 

 

 

 Figure 6. Nemenyi test of the machine learning models SVM, ANN and RF, in the modeling 
of the net growth in the in Atlantic Forest fragments in Minas Gerais, Brazil. 
 

4. Discussion 

Ongoing changes in environmental factors and disturbance regimes are consistently 

increasing mortality and forcing forests to have younger, smaller stands, reducing growth and 

carbon storage potential (McDowell et al., 2020). Understanding tropical forest dynamics and 

planning for their sustainable management require efficient, yet accurate, predictions of the 

joint dynamics of hundreds of tree species (Rüger et al., 2020). Growth models are essential for 

this. Using machine learning models, we showed that net growth in the basal area can be 

accurately predicted, using variable edaphic, anthropogenic and climatic variables. 

We found that edaphic, forest attributes and climatic variables are important in shaping 

tree growth in the Brazilian Atlantic Forest. The different configurations of a forest occur 

because of natural and/or anthropic changes that take place in the structure and composition of 
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the vegetation (Bezerra et al., 2021). The growth of individual trees is the result of the combined 

effects of several factors, such as age, tree size, microenvironment, genetic traits, and 

competitive status (Kunstler et al., 2012; Pretzsch, 2009; Weiskittel et al., 2011). Therefore, 

variables related to soils, climate, and effects are key factors in species growth and distribution 

(Martini et al., 2020). 

In our study, soil acidity was the most important characteristic for shaping growth. It 

can have deleterious effects on forest ecosystems (Šantrůčková et al., 2019), by negatively 

affecting plant growth. Soil acidification impairs the long-term functioning of forest ecosystems 

by altering the availability of critical macro- and micronutrients in the soil (Desie et al., 2020; 

Schaberg et al., 2001). 

The variables BA and age at abandonment were also important. The structural attributes 

and functional composition of the stand determine the growth of the trees and consequently the 

aboveground biomass (Manuel Villa et al., 2020). A study in the Atlantic Forest has already 

revealed that variables related to average tree size, i.e. basal area, are important for models in 

the biome (David et al., 2017). In general, tree size variables are essential components of growth 

modeling, because they express the competition between individuals. Basal area (BA) is an 

effective measure, since it incorporates the number of trees in a stand and their diameters, to 

express competition and aid in growth estimation (Weiskittel et al., 2011). The time of 

abandonment, on the other hand, influences the diversity of plants (Mangueira et al., 2021) and 

occurs due to changes in the forest succession stages and, consequently, affects tree growth. 

Finally, we identify that precipitation is also associated with tree growth in the Atlantic 

Forest. Studies in the biome (David et al., 2017; Rocha et al., 2020) corroborated this assertion 

Potential increases in tree mortality associated with climate-induced physiological stress and 

interactions with other climate-mediated processes such as insect outbreaks and forest fires 

affect forest growth (Allen et al., 2010). 

We found that machine learning methods were efficient and are important tools for 

modeling growth in forest fragments in the Brazilian Atlantic Forest. They can help in 

understanding the biome and in developing management strategies aimed at recovering 

biodiversity and reducing the deleterious effects of fragmentation 

The Random Forest method showed superiority over the others for modeling growth in 

the Atlantic Forest. The metrics and the graphs of observed and estimates residuals used 

corroborate this statement. Random Forest is being increasingly used in ecological studies 

because it is suitable for the analysis of large complex data sets (Reise et al., 2019). This method 
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has shown excellent results in forestry estimates (Freeman et al., 2015; Mascaro et al., 2014). 

As a non-parametric method, it benefits from its ability to take into account data variability and 

non-linear relationships Alternatively, parametric models are simpler and more widely known, 

and easier to share and explain (Freeman et al., 2015; Leite et al., 2020). 

Machine learning models can generate promising results for tree growth estimates in 

tropical forests. Our study presents a new way to do this, especially in forest fragments of the 

Atlantic Forest. It is worth noting that new approaches, such as the inclusion of other variables 

and the use of other models (e.g., Cubist, Regression Trees Models, etc.) can improve the 

estimates. Studies of this kind should be encouraged and can help to better understand tree 

dynamics and assist in conservation practices in forests around the world, especially those 

threatened by human pressure and fragmentation. 

 

5. Conclusion 

Soil, forest attributes and climatic variables are important for modeling growth in the 

Brazilian Atlantic Forest. With the use of these variables machine learning models (RF, ANN, 

SVM) are promising in estimating the net growth in basal area in this biome. RF is the best 

algorithm to perform this task, as observed in our study area. Our results represent a new 

approach to accurately predict tree growth in Atlantic Forest fragments and can assist in 

biodiversity management and conservation strategies. 
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Abstract 
The accuracy of the volume and above-ground biomass estimation of exploitable trees by the 

practice of selective logging is essential for the elaboration of a sustainable management plan. 

The objective of the study is using machine learning models capable of estimating volume and 

biomass in commercial trees in Southwestern Amazon. The study was carried out in the 

Southwestern Amazon, in the municipality of Porto Acre, Acre state, Brazil. Determining 

volume and biomass of sample trees was performed using dendrometric, climatic and 

topographic variables. The Boruta Algorithm was applied to select the best set of variables. 

Support Vector Machines (SVM), Artificial Neural Networks (ANN), Random Forests (RF) 

and Generalized Linear Model (GLM) were the machine learning methods evaluated. In 

general, the evaluated methods showed a satisfactory generalization power. The results showed 

that the volume and biomass predictions of commercial trees in the Amazon rainforest differed 

between the techniques (p <0.05). ANNs showed the best performances to predict the volume 

and biomass of commercial trees, with the highest ryŷ and the lowest RSME and MAE. In this 

way, machine learning methods such as SVM, ANN, RF and GLM are useful and efficient tools 

for estimating volume and biomass of commercial trees in the Amazon rainforest. These 

methods can be useful tools to improve the accuracy of estimates in forest management plans. 

Keywords: allometry; dense rainforest; models. 

 

1. Introduction 

Amazon rainforest presents one of the greatest biodiversity on the planet (Andrade et 

al., 2019; Luize et al., 2018; Steege et al., 2016), covering more than a third of all the diversity 

of neotropical plants (Antonelli and Sanmartín, 2011) and housing between 6,700-16,000 

species of trees (Steege et al., 2013; Cardoso et al., 2017). In addition, the Amazon have an 

important role in the carbon cycle, storing around 150–200 Pg of carbon in biomass and living 

things (Brienen et al., 2015). 

The Brazilian Amazon rainforest is the largest remnant of the forest (Hansen et al., 

2013). In this biome, selective logging, which includes cutting of individuals from timber tree 

species, is one of the most common land uses (Gaui et al., 2019). This practice, when associated 

with correct planning and the use of low impact logging techniques, reduces the damage caused 

by logging to the ecosystem and contributes to the conservation of global biodiversity (Peña-

Claros et al., 2008; Andrade et al., 2019; Chaudhary et al., 2016). 
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The exact quantification of biomass stocks and the above-ground volume of exploitable 

trees by the practice of selective logging is essential for the elaboration of an effectively 

sustainable management plan. The sustainability of forest management is associated with the 

continuous production of wood in the future in similar quantity and quality (Fortini, 2019; Putz 

et al., 2008). In addition, quantifying these components of forest production is important for 

understanding the role of these ecosystems in the global carbon cycle (Goodman et al., 2014a) 

and for the successful implementation of climate change mitigation policies (Chave et al., 

2014). 

Researches on allometric equations in the Amazon region have already been carried out 

(Alvarez et al., 2012; Chambers et al., 2001; Chave et al., 2005, 2014; Cummings et al., 2002; 

Goodman et al., 2013, 2014a; Keller et al., 2001; Lima et al., 2012; Nelson et al., 1999; 

Nogueira et al., 2008; Vieilledent et al., 2012). However, studies involving machine learning 

models are rare in the region, which are more common for even-aged forests (e.g. Domingues 

et al., 2020; Souza et al., 2019). Machine learning models are a rapidly growing area of study 

and have been increasingly used for modeling in tropical forests because they can generate more 

accurate estimates than traditional data modeling approaches (Gleason and Im, 2012; Jachowski 

et al., 2013; Zhao et al., 2011). 

This superiority in the generation of estimates is associated with a lower number of 

assumptions about data and processes (Diamantopoulou and Milios, 2010), which allows the 

generation of better results in prediction, in view of the complex relationships of forest 

dynamics.  In view of the above, this study aims to develop models of machine learning capable 

of estimating the volume and biomass in commercial trees in Southwestern Amazon, based on 

dendrometric, climatic and topographic characteristics. The research questions of this study are: 

(i) Are the machine learning methods evaluated efficient for estimating the volume and biomass 

of commercial trees?; (ii) What is the best method to estimate the volume of commercial trees?; 

and (iii) What is the best method to estimate the biomass of commercial trees? 

 

2. Material and Methods 

2.1 Characterization of the study area 

The study was carried out at Antimary Farm I and II, located in the Southwestern 

Amazon, in the municipality of Porto Acre, Acre, Brazil (Figure 1). The area under sustainable 

management comprises 1,253.02 ha. The region's vegetation is classified as a “terra firme” - 

forest with solid ground- and wetland rainforest (Alencar et al., 1979). The climate of the region 
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is of the Am type, according to the Köppen classification (Alvares et al., 2013). The study area 

presents two types of soil, Red Argisol and Dystrophic Red Yellow Latosol (Acre, 2010). 

Topography is predominantly flat, with a slope of around 5%. Altimetry varies between 220 to 

300 m above the sea level. 

A census was conducted in the exploitable area in May 2015 and the Sustainable Forest 

Management Plan (SFMP) was approved in 2016 by the Acre Environment Institute (Instituto 

de Meio Ambiente do Acre, IMAC). 

 

 

Figure 1 – Location of the study area in the Southwestern Amazon, in the municipality 
of Porto Acre, Acre, Brazil.
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2.2 Determination of volume and biomass stocks 

Sample trees were selected based on density and basal area, obtained from information 

from the census provided by the company responsible for management, in which all trees of 

commercial interest with a diameter at breast height (DBH; 1.30 m) ≥ 50 cm were measured. 

Eighteen species of highest importance value were selected, distributed in 214 individuals. 

The values of the volume and biomass stocks in the study area were obtained by Romero 

(2018). The volume of the selected individuals was determined by strict cubing using the 

method of Smalian (Husch et al., 2003). Wood discs from the base of the logs were collected 

to determine the basic wood density according to the ABNT standard (2003). Biomass was 

calculated by multiplying the volume and the basic density of the wood (Chave et al., 2005). 

The average basic wood density of trees analyzed was 0.59 g cm-3 (Table 1). 
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Table 1 – Number of trees and basic wood density of commercial tree species present in Southwestern Amazon, in the municipality of Porto 

Acre, Acre, Brazil 

SN F N Bd 
Albizia niopoides (Spruce ex Benth.) Burkart  Fabaceae Lindl. 7 0.64 ± 0.03 
Apuleia leiocarpa (Vogel) J.F.Macbr. Fabaceae Lindl. 13 0.77 ± 0.03 
Astronium lecointei Ducke Anacardiaceae R.Br. 6 0.82 ± 0.05 
Barnebydendron riedelii (Tul.) J.H.Kirkbr. Fabaceae Lindl. 5 0.57 ± 0.03 
Buchenavia tetraphylla (Aubl.) R.A.Howard Combretaceae R.Br. 9 0.69 ± 0.04 
Castilla ulei Warb. Moraceae Gaudich. 37 0.41 ± 0.04 
Cedrela odorata L. Meliaceae A.Juss. 8 0.43 ± 0.04 
Ceiba pentandra (L.) Gaertn. Malvaceae Juss. 4 0.29 ± 0.03 
Ceiba samauma (Mart.) K.Schum. Malvaceae Juss. 22 0.51 ± 0.05 
Copaifera multijuga Hayne Fabaceae Lindl. 6 0.52 ± 0.05 
Dipteryx odorata (Aubl.) Willd. Fabaceae Lindl. 11 0.80 ± 0.04 
Eschweilera bracteosa (Poepp. ex O.Berg) Miers Lecythidaceae A.Rich. 15 0.65 ± 0.05 
Eschweilera grandiflora (Aubl.) Sandwith Lecythidaceae A.Rich. 13 0.73 ± 0.03 
Handroanthus serratifolius (Vahl) S.Grose Bignoniaceae Juss. 8 0.82 ± 0.04 
Hura crepitans L. Euphorbiaceae Juss. 6 0.36 ± 0.06 
Hymenaea courbaril L. Fabaceae Lindl. 8 0.76 ± 0.04 
Parkia paraensis Ducke Fabaceae Lindl. 20 0.46 ± 0.06 
Schizolobium parahyba var. amazonicum 
(Huber ex Ducke) Barneby 

Fabaceae Lindl. 16 0.48 ± 0.08 𝑋̅ ± CI    11.89 ± 8.12 0.59 ± 0.17 
Where: SN = Scientific name; F = family; N = number of individuals; Bd = Basic wood density, in g cm-3; 𝑋̅ = Mean; CI = confidence interval.  
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2.3 Predictor variables for modeling 

For modeling, dendrometric, qualitative, climatic and topographic variables (predictor 

variables) were used to estimate volume and biomass stocks (response variables). Dendrometric 

variables used were: DBH, commercial height (Ch) and basic wood density (Bd) (Romero, 

2018). Qualitative variables were the species and the family of the individuals (Romero, 2018). 

Bioclimatic variables used (Bio 1-19) are derived from the monthly values of temperature and 

precipitation and were obtained from the WorldClim - Global Climate Data database (Fick and 

Hijmans, 2017), with a spatial resolution of approximately 1 km2. The Bio 5 climatic variable 

was not used because it did not show variability in the study area. The topographic variable 

used was altitude (Table 2). 

Table 2 – Predictor variables used in the modeling of volume and biomass in the Southwestern 

Amazon, in the municipality of Porto Acre, Acre, Brazil 

Variable Min 1° Quartil Median Mean 3° Quartil Max SD 
DBH  50.38 64.78 75.44 79.60 89.52 149.92 20.14 
Ch 7.30 11.71 14.20 14.82 17.87 25.40 4.03 
Bd 0.29 0.43 14.20 0.57 0.73 0.82 0.15 
Bio1 24.86 24.88 24.88 24.88 24.89 24.92 0.01 
Bio2 11.45 11.51 11.52 11.51 11.52 11.53 0.01 
Bio3 81.21 81.62 81.68 81.65 81.68 82.02 0.09 
Bio4 82.28 83.38 83.42 83.49 83.63 84.39 0.25 
Bio6 17.30 17.30 17.30 17.30 17.30 17.40 0.01 
Bio7 14.00 14.10 14.10 14.10 14.10 14.10 0.01 
Bio8 25.32 25.32 25.33 25.33 25.35 25.38 0.02 
Bio9 23.63 23.67 23.67 23.67 23.68 23.73 0.02 
Bio10 25.55 25.57 25.57 25.57 25.58 25.60 0.01 
Bio11 23.63 23.67 23.67 23.67 23.68 23.73 0.02 
Bio12 1830.00 1834.00 1836.00 1836.31 1839.00 1853.00 3.98 
Bio13 250.00 251.00 252.00 251.61 252.00 254.00 1.03 
Bio14 40.00 40.00 41.00 40.70 41.00 41.00 0.46 
Bio15 51.47 51.58 51.77 51.74 51.77 52.05 0.17 
Bio16 735.00 736.00 738.00 737.61 738.00 744.00 2.09 
Bio17 154.00 155.00 155.00 155.29 156.00 158.00 0.91 
Bio18 568.00 570.00 570.00 570.27 571.00 576.00 1.69 
Bio19 154.00 155.00 155.00 156.82 156.00 198.00 8.01 
Alt 151.05 164.99 173.16 175.08 183.08 248.87 13.75 

Where: Min = minimum value; Max = maximum value; SD = standard deviation; DBH = 
diameter at breast height, in cm; Ch = commercial height, in m; Db = basic wood density; in g 
cm-3; Bio1 = annual mean temperature (°C); Bio2 = mean diurnal range (°C); Bio3 = 
Isothermality (%); Bio4 = temperature seasonality; Bio5 = max temperature of warmest month 
(°C); Bio6 = min temperature of coldest month (°C); Bio7 = temperature annual range (°C); 
Bio8 = mean temperature of wettest quarter (°C); Bio9 = mean temperature of driest quarter 
(°C); Bio10 = mean temperature of warmest quarter (°C); Bio11 = mean temperature of coldest 
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quarter (°C); Bio12 = annual precipitation (mm); Bio13 = precipitation of wettest month (mm); 
Bio14 = precipitation of driest month (mm); Bio15 = precipitation seasonality (Coefficient of 
Variation) (mm); Bio16 = precipitation of wettest quarter (mm); Bio17 = precipitation of driest 
quarter (mm); Bio18 = precipitation of warmest quarter (mm); Bio19 = precipitation of coldest 
quarter (mm); Alt = altitude. 

 

The Boruta Algorithm (Kursa and Rudnicki, 2010) was applied to select the best set of 

predictor variables to estimate volume and biomass. This algorithm iteratively removes the 

resources that are proven by a statistical test to be less relevant than random probes (Kursa and 

Rudnicki, 2010). The Boruta R Software Package was used.  

 Quantitative variables were standardized to accelerate the convergence rate and reduce 

the iteration process in training:  

Zi = (xi-𝑥̅)/σ 

where:  

Zi = standardized value of the i-th observation;  

xi = value of the i-th observation;  𝑥̅ = average of the observed values; 

 σ = standard deviation.  

The scale function of R Software was used in this step. 

 

2.4 Model evaluation 

The tested models to estimate the volume and biomass were: Support Vector Machines 

(SVM), Artificial Neural Networks (ANN), Random Forests (RF) and Generalized Linear 

Model (GLM). 

The trained ANNs were of the multilayer perceptron type, also known as multilayer 

perceptron (MLP). The typical MLP architecture consists of an input layer containing the 

predictor variables, one or more hidden layers and an output layer containing the predicted 

variable. The activation function used was logistics. The training algorithms used were resilient 

propagation. The ANNs were implemented with the MLP function of the “RSNNS” Package 

in R. 

The function svm of the “e1071” Package on R was used for training SVMs. The Kernel 

function was of the linear type. The randomForest function of the package of the same name in 
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R was used for RF training. The glm function and link function of identity type and Gaussian 

family were used for GLM. 

The performance of the models in the estimation of volume and biomass was assessed 

using the k–fold cross-validation method, with the data divided into 5 folds (4 for 

adjustments/training and 1 for validation). At each adjustment/training of the 5 folds the metrics 

of Root Mean Square Error – RMSE (Eq. 1) and mean absolute error – MAE (Eq. 2) were 

calculated. This process was repeated 50 times, obtaining the average of the metrics for 

comparison of all models. The data were selected randomly in each of the 50 repetitions, 

resulting in different data sets, for greater robustness of the evaluation. 

 

𝑅𝑀𝑆𝐸 =  √1𝑅 ∑ ∑ (𝑋𝑖 − 𝑋̂𝑖)²𝑛𝑖=1 𝑛𝑅
𝑟=1  (1) 

 𝑀𝐴𝐸 =  1𝑅 ∑ |∑ (𝑋𝑖 − 𝑋̂𝑖)𝑛𝑖=1 |𝑛𝑅
𝑟=1  

(2) 

Where:  

R = number of repetitions (50);  

n = number of observations; 

 𝐻𝑖 = observed variable from the i-th tree, in m; 

 𝐻̂𝑖 = estimated variable of the i-th tree, in m.  

 

 The averages of RMSE and MAE of each method in each repetition were ranked with 

weight assignments from 1 to 4, with 1 for the lowest value and 4 for the highest value. The 

weight pij assigned to the model mj for the mean of RMSE was added to the weight pij assigned 

to the same model mj for the mean of MAE, with i = 1, 2, ..., 50. With the result of these sums, 

the values were submitted to the Friedman – Nemenyi test, at the 5% significance level (Eq. 3). 

𝐶𝐷 = 𝑞𝛼√𝑘(𝑘 + 1)6𝑁  (3) 

Where:  

CD = critical difference; 

 𝑞𝛼 = critical value calculated based on Studentized interval statistics (Harter, 1960) divided by 

√2; 

 k = number of algorithms being compared;  
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N = number of data sets. 

3. Results 

3.1. Selection of variables 

The applied variable selection procedure allowed the choice of the best model based on 

the ideal subset of variables. For that, the variables selected to estimate the volume were DAP, 

Ch, species and family (Figure 2). In addition to the predictor variables mentioned for the 

volume, the wood basic density variable was added, for the biomass prediction. 

The bioclimatic variables and the topographic variable altitude were not considered 

significant for the modeling of volume and biomass based on the Boruta algorithm (Figure 2). 

 

 

Figure 2 – Most important variables for modeling the volume (A) and biomass (B) of 

commercial trees in Southwestern Amazon, in the municipality of Porto Acre, Acre, Brazil. 
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3.2 Model performance 

 

In general, the evaluated models showed a satisfactory generalization power, indicated 

by similar precision results between the observed and estimated data in the validation for all 

variables studied (Figure 3). Pearson's correlation coefficient (ryŷ) between the estimated and 

observed volume and biomass data was greater than 0.85 in all applied machine learning 

models. 
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Figure 3 – Observed and estimated values of volume and biomass by the different 

machine learning models, SVM, ANN, RF and GLM tested.

 

GLM showed the best performance to estimate the volume of commercial trees, with 

the highest ryŷ and the lowest RSME and MAE for all repetitions (Table 3). RF had a ryŷ close 

to the GLM model and the second best performance to predict volume. The ANN algorithm 
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showed moderate performance, and the SVM had the worst performance for predicting the 

volume of commercial trees in the Amazon. 

ANN showed the best performance with the highest ryŷ and the lowest RMSE and MAE 

for all repetitions, to predict biomass. RF also had the second best performance for predicting 

biomass. SVM had the worst performance for the prediction of commercial tree biomass in 

Southwestern Amazon (Table 3). 

 

Table 3 – Statistics of the tested machine learning models (SVM, ANN, RF and GLM) for 

modeling volume and biomass of commercial trees in the Southwestern Amazon, in the 

municipality of Porto Acre, Acre, Brazil 

Variable Model RMSE MAE ryŷ 

Volume 

SVM 1.93 ± 0.54 1.19 ± 0.23 0.89 ± 0.04 
ANN 1.67 ± 0.36 1.13 ± 0.19 0.91 ± 0.04 
RF 1.82 ± 0.41 1.24 ± 0.20 0.90 ± 0.04 

GLM 1.82 ± 0.33 1.30 ± 0.18 0.89± 0.04 

Biomass 

SVM 1.15 ± 0.33 0.67 ± 0.15 0.92 ± 0.03 
ANN 1.10 ± 0.27 0.69 ± 0.13 0.92 ± 0.03 
RF 1.19 ± 0.31 0.76 ± 0.14 0.91 ± 0.03 

GLM 1.35 ± 0.27 0.97 ± 0.12 0.88 ± 0.04 
Where: RMSE: Root Mean Square Error; MAE: mean absolute error; SVM: Support Vector 

Machine; ANN: Artificial Neural Networks; RF: Random Forest; GLM: Generalized Linear 

Model. 

 

 The means of RMSE and MAE varied over the repetitions for each technique. The 

RMSE and MAE averages of ANN and GLM showed the lowest values to estimate the volume 

of trees (Figure 3). ANN and RF showed the lowest RMSE and MAE over the 50 repetitions in 

the cross-validation, to estimate the biomass (Figure 4). SVM showed greater instability in the 

values of RMSE and MAE of the cross-validation and the highest values of RMSE and MAE 

for all variables evaluated in the present study. 
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Figure 4 – Root Mean Square Error (RMSE) of the machine learning models SVM, ANN, RF 

and GLM, in the modeling of the volume and biomass of commercial trees in the Southwestern 

Amazon, in the municipality of Porto Acre, Acre, Brazil. 
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 The Friedman test with the means of cross-validation RMSE showed that the predictions of 

volume and biomass of commercial trees in the Amazon differed between the techniques (p <0.05). 

Thus, the hypothesis that at least one average of one of the techniques differs from the others was 

accepted. The Nemenyi test pointed out that the difference between the GLM model and the other 

techniques was greater than the calculated critical difference (CD) to estimate the volume of the 

trees. The calculated critical difference (CD) of the ANN was greater than the other machine 

learning techniques evaluated to estimate biomass (Figure 5). 

 

 

Figure 5 – Nemenyi test in the cross-validation of the estimates of volume and biomass of 

commercial trees in the Southwestern Amazon, in the municipality of Porto Acre, Acre, Brazil. 

 

4. Discussion 

4.1 Selection of variables 

The Boruta variable selection method is a preferable algorithm among the variable selection 

methods because it has a high computational efficiency for working on data sets with many 

predictors (Speiser et al., 2019). In this study, the method pointed out that the diameter and height 

variables (total and commercial) are fundamental to explain the allometric attributes of the trees. 
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The stem diameter is a good predictor (Chambers et al., 2001; Kuyah et al., 2012; Yuen et al., 

2016) and this is an important advantage for practical use. However, the integration of tree height 

significantly reduces uncertainties (Chave et al., 2014; Goodman et al., 2014b; Rutishauser et al., 

2013).  

Besides that, the inclusion of the wood basic density variable is an important predictor for 

biomass. This variable, with the diameter of the trunk the height of the tree and the type of forest 

(dry, moist or wet) are the most important predictors of the biomass (Chave et al., 2005). The 

inclusion and combination of both provide better quality in adjustment and estimates (Chave et al., 

2005; Goodman et al., 2014b). 

Our analysis also showed that the bioclimatic and topographic variables were not significant 

for estimating volume and biomass in commercial trees in the Amazon. This occurs due to the low 

variability of this information in the area, in view of the uniform distribution of these characteristics 

in the study region. However, considering the role of climate in predicting forest attributes can 

provide more accurate estimates (Chave et al., 2014; Feldpausch et al., 2011), since diameter-height 

relationships in trees depend on a series of physiological and environmental factors (Lines et al., 

2012; Marshall et al., 2012). Maximum and minimum temperature, precipitation seasonality and 

degree of solar radiation have strong correlations with biomass (Banin et al., 2012; Taylor et al., 

2019). 

  

4.2 Model performance 

In general, the machine learning models with the significant predictor variables pointed out 

by the Boruta algorithm accurately estimated the production attributes of evaluated commercial 

trees in Southwestern Amazon. A major advantage of using machine learning methods over 

traditional models is its applicability to any number of variables (Loh, 2011). This method is a very 

valuable procedure for working with data sets in large-scale databases (Abdel-Rahman et al., 2014; 

Belgiu and Drăguţ, 2016) because it can manipulate continuous, categorical and binary data (Ali 

et al., 2012) and is able to adapt to complex and non-linear relationships between variables, in 

addition to dealing with interaction effects between them (Reise et al., 2019). These models can 

encompass several types of information and it is possible to work with a single model for different 

situations. 
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The Friedman test confirm (p <0.05) that the ANN model was the best to estimate volume 

and biomass of commercial trees in Southwestern Amazon. The RMSE and MAE corroborate this 

statement, showing small differences in training and validation. ANN is considered an important 

non-parametric algorithm for estimating biophysical parameters of the forest (Nandy et al., 2017). 

Neural networks can implicitly detect any complex nonlinear relationships between independent 

and dependent variables (Lazri and Ameur, 2018). In contrast to conventional parametric 

approaches, ANN does not require any assumptions about the statistical distribution of the data. 

RF presented intermediaries results for estimating volume and biomass variables. This 

method produces the most accurate and stable predictions (Sun et al., 2019). This algorithm has 

been widely applied in ecological studies, as it can work with complex data analyzes (Reise et al., 

2019). In addition, RF has been considered one of the best methods of classification and regression 

due to the high precision for estimation results, high calculation speed, robustness and the ability 

to predict important variables (Breiman, 2001). Decision tree-based algorithms are easy to apply, 

since fewer parameters need to be estimated. Therefore, they have a high degree of automation 

(Herrera et al., 2010; Rodriguez-Galiano et al., 2015). 

SVM presented less precision in the volume estimates compared to the RMSE and MAE 

values. SVMs have the inconvenience of a delicate and computationally expensive hyperparameter 

adjustment. In addition, results for SVM compared to other methods showed average accuracy. 

ANNs and RF generally produce better results than SVMs for regression tasks. The simple 

statistical procedures and the set methods were very competitive for classification (Meyer et al., 

2003). 

GLM showed less precision in biomass estimates. This may be related to the link function 

used. GLMs have the characteristic of being able to choose the residual distribution family, 

important in the case of non-parametric models, such as those that follow Poisson distribution and 

negative binomial errors (Lopatin et al., 2016). The choice of one function over another may 

explain the low performance. 

As forest volume and biomass are important for forest management, global change 

monitoring and modeling of forest productivity, there is a need for reliable methods of assessing 

and monitoring forest production (Nandy et al., 2017). The results presented here suggest a new 

alternative to predict these forest attributes. 
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It is worth mentioning that new approaches, such as the inclusion of climatic and 

topographic variables with greater variability, in different study areas can improve the estimates. 

In addition, the evaluation of the application of other variables can be used in view of the ability to 

work with high dimension data from machine learning models. 

More generally, “best estimates”, even in models with all possible variables, should not be 

considered entirely accurate or baselines against which all other estimates are compared (Goodman 

et al., 2014b). Thus, new studies may be the subject of future research to improve results. In 

addition, the applicability of other algorithms (e.g., Cubist, Regression Trees Models, etc.) can be 

tested and produce better estimates with transparency and computational efficiency (Corona-Núñez 

et al., 2017). 

 

5. Conclusion 

The tested machine learning methods (SVM, ANN, RF and GLM) are useful and efficient 

tools for estimating volume and biomass of commercial trees in the Southwestern Amazon. This 

study represents a new approach to estimate these attributes linked to forest production. ANN is 

the most suitable for estimating volume and biomass of commercial trees.  

This study also confirm that the variables diameter, height and basic wood density are 

important variables for the prediction of volume and tree biomass. 
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CONCLUSÕES GERAIS 

 
Em nosso estudo, observou-se que as técnicas de aprendizado de máquina estudadas 

representam um caminho promissora para modelagem dos processos demográficos (recrutamento, 

crescimento e mortalidade) na Mata Atlântica no Brasil (Capítulos I, II e III) e em estimativas de 

estoque e volume na região Amazônica Brasileira (Capítulo IV).  

Verificou-se que variáveis climáticas, edáficas, topográficas, atributos da floresta e 

antropogênicas são importantes preditores dos processos demográficos. O entendimento dos efeitos 

dessas variáveis pode auxiliar em descobertas do comportamento das florestas, sobretudo as 

ameaças pelo desmatamento e fragmentação.  

Nossos resultados, contribuem para o entendimento dos processos da dinâmica florestal em 

biomas brasileiros e podem fornecer subsídios para o entendimento, manejo e manutenção da 

biodiversidade em florestas tropicais. 
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Table S1. Overview, climate, anthropogenic variables, soil and topography variables of the seven studied Atlantic Forest fragments in 
Minas Gerais, Brazil 

 
Variables 

 
Number  Description 

1.Soil and 
topography 
variables 

1.1 pH H2O 0cm - 20 cm and 0cm - 40 cm 
1.2 P (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.3 K (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.4 Ca2+ (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.5 Mg2+ (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.6 Al3+ Alumínio trocável (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.7 H + Al (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.8 SB (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.9 t (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.10 T (cmolc/dm³) 0cm - 20 cm and 0cm - 40 cm 
1.11 V (%) 0cm - 20 cm and 0cm - 40 cm 
1.12 m (%) 0cm - 20 cm and 0cm - 40 cm 
1.13 Organic matter(dag/kg) 0cm - 20 cm and 0cm - 40 cm 
1.14 P-Rem (mg/L) 0cm - 20 cm and 0cm - 40 cm 
1.15 pH H2O 0cm - 20 cm and 0cm - 40 cm 
1.16 Elevation (m) 
1.17 Declivity (%) 
1.18 Slope Angle 

2.Climate 
variables 

2.1 Mean annual temperature 1 year before measurement 
2.2 Average of Mean annual temperature 
2.3 Annual precipitation (measurement year) 
2.4 Annual precipitation (1 year before measurement) 
2.5 Mean annual precipitation (1 and 2 years before measurement) 
2.6 Mean annual precipitation (1, 2 and 3 years before measurement) 
2.7 Mean annual precipitation (1, 2, 3 and 4 years before measurement) 
2.8 Mean annual precipitation 
2.9 Total precipitation of the three driest months 
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2.10 Number of dry months < 100 mm rainfall 
2.11 Climatic water deficit (from 1989 to 1 year before measurement) 
2.12 Mean climatic water deficit (1, 2, 3 and 4 years before measurement) 
2.13 Mean climatic water deficit (1, 2 and 3 years before measurement) 
2.14 Mean climatic water deficit (1 and 2 years before measurement) 
2.15 Climatic water deficit (1 year before measurement) 
2.16 Climatic water deficit (measurement year) 

3.Anthropogenic 
variables 

3.1 Forest cover (ha); Year=1985; 2002;2017 - Buffer=500m 
3.2 Forest cover (ha); Year=1985; 2002; 2017 - Buffer=1000m 
3.3 Forest cover (ha); Year=1985; 2002; 2017 - Buffer=1000m 
3.4 Land Use History  
3.5 Edge distance 
3.6 Age of Abandonment 
3.7 Forest size 

4. Forest 
attributes 

4.1  Basal area - plots 
4.2  Number of stems 

Land Use History (agricultural production; deforestation; eucalyptus; selective logging); Mean annual temperature 1 year before 
measurement: average of Mean annual temperature (from 1989 to 1 year before measurement); Mean annual precipitation (from 1989 
to 1 year before measurement); BS = Base Sum = Ca2+ + Mg2+ + K; t - Effective Cation Exchange Capacity = Ca2+ + Mg2+ + K + AL3+; 
T - Cation Exchange Capacity = Ca2+ + Mg2+ + K + H+ + AL3+ ; V= Base Saturation Index = 100*SB/T; m= Aluminum Saturation Index 
= 100* AL3+/(t).. 
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Table S2. Overview of seven Atlantic Forest fragments located in Minas Gerais, Brazil included in the study. Mean 
and Standard Deviation (in brackets) of main characteristics of each area. CWD = climatic water deficit 

Description 

 
Atlantic Forest fragments 

 
FR1 FR2 FR3 FR4 FR5 FR6 FR7 

Forest Attributes        

Tree Species 
31 33 25 37 24 40 30 

(±7) (±4) (±8) (±9) (±7) (±14) (±5) 

Stems (ha) 
2008 1748 1765 1825 1610 1616 1482 

(±664) (±300) (±454) (±264) (±484) (±344) (±305) 

BA (ha) 
18.85 23.17 16.46 25.38 19.11 22.99 27.33 

(±6.32) (±3.19) (±6.05) (±7.61) (±5.32) (±8.45) (±8.47) 

Stems Recruitment (ha/year) 
44 45 42 33 66 35 30 

(±34) (±30) (±25) (±16) (±39) (±18) (±27) 

BA Recruitment (ha/year) 
0.11 0.12 0.13 0.08 0.20 0.10 0.08 

(±0.09) (±0.08) (±0.09) (±0.05) (±0.12) (±0.06) (±0.07) 

Stems Mortality (ha/year) 
42 42 44 37 33 29 37 

(±48) (±34) (±32) (±24) (±20) (±21) (±25) 

BA Mortality (ha/year) 
0.35 0.42 0.41 0.40 0.38 0.32 0.45 

(±0.50) (±0.38) (±0.30) (±0.34) (±0.47) (±0.30) (±0.47) 
Land use history (% of plots)      

Agricultural production 40 0 0 0 15 0 0 
Deforestation 0 0 81.25 0 0 0 0 

Eucalyptus 0 0 0 0 35 0 0 
Selective logging 60 100 18.75 100 50 100 100 

Landscape        
Forest Size 106.00 21.80 264.00 37.30 44.11 38.40 17.00 

Elevation (m) 
959.80 719.40 267.75 267.83 696.85 846.67 726.30 

(±88.09) (±5.55) (±19.29) (±25.02) (±21.26) (±56.93) (±13.23) 

Declivity (%) 
30.52 27.29 26.25 29.07 33.86 36.35 25.46 

(±9.22) (±6.40) (±13.27) (±3.94) (±10.24) (±15.01) (±8.84) 

Slope Angle 
161.27 298.69 265.53 109.46 156.10 179.92 162.74 

(±88.05) (±33.77) (±36.29) (±28.02) (±39.99) (±26.83) (±19.17) 
Forest cover (ha) 264.97 148.97 289.61 302.07 66.71 277.78 109.91 
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(±11.25) (±3.74) (±9.73) (±2.11) (±3.41) (±6.49) (±10.72) 

Edge distance (m) 
101.90 64.70 88.58 74.16 89.74 120.71 103.80 

(±69.26) (±7.04) (±76.65) (±35.07) (±33.78) (±68.75) (±39.83) 
Soil        

pH (H2O) 
4.52 4.00 3.94 3.76 4.19 4.23 4.11 

(±0.25) (±0.06) (±0.15) (±0.08) (±0.28) (±0.55) (±0.28) 

K (cmolc/dm³) 
0.16 0.07 0.08 0.07 0.07 0.09 0.07 

(±0.11) (±0.01) (±0.01) (±0.01) (±0.02) (±0.03) (±0.02) 

Ca2+ (cmolc/dm³) 0.49 0.29 0.31 0.16 0.50 0.49 0.46 
(±0.45) (±0.10) (±0.08) (±0.07) (±0.45) (±0.56) (±0.59) 

Mg2+ (cmolc/dm³) 0.24 0.10 0.17 0.11 0.25 0.16 0.18 
(±0.27) (±0.01) (±0.06) (±0.01) (±0.31) (±0.10) (±0.16) 

Al3+ (cmolc/dm³) 1.06 1.36 1.40 1.82 1.62 0.91 1.71 
(±0.43) (±0.14) (±0.38) (±0.17) (±0.59) (±0.34) (±0.73) 

P-res (mg/L) 
10.69 17.45 21.54 21.85 15.36 21.23 18.03 

(±2.07) (±1.34) (±2.32) (±1.65) (±2.96) (±5.17) (±4.26) 

SOM (dag/kg) 
5.64 3.85 3.89 3.00 4.26 5.14) 4.20 

(±1.75) (±0.35) (±0.57) (±0.28) (±0.66) (±1.56) (±0.86) 
Climate        

Precipitation (mm) 
1112.74 1254.77 1194.38 1194.38 1254.77 1263.92 1254.77 

(±214.50) (±260.52) (±298.96) (±298.96) (±260.52) (±226.07) (±260.52) 

CWD (mm) 
-1021.36 -881.24 -2020.77 -1499.09 -864.35 -940.19 -941.14 
(±432.50) (±299.13) (±563.16) (±502.88) (±354.39) (±395.45) (±248.97) 

Precipitation driest months (mm) 
30.84 39.44 33.99 33.99 39.44 39.84 39.44 

(±33.57) (±34.82) (±30.13) (±30.13) (±34.82) (±30.99) (±34.82) 

Precipitation Less 100mm 
7.82 7.47 7.53 7.53 7.47 7.38 7.47 

(±1.17) (±1.24) (±1.28) (±1.28) (±1.24) (±1.18) (±1.24) 

Mean Temperature (ºC) 
20.85 20.11 24.15 24.15 20.11 19.51 20.11 

(±1.59) (±0.40) (±1.73) (±1.73) (±0.40) (±1.97) (±0.40) 
FR1: Cachoeira das Pombas; FR2: Mata da Garagem; FR3: Ipaba Mata1; FR4: Ipaba Mata2; FR5: Centev; FR6: São José and FR7: Mata 
da Silvicultura.
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Figure S1. Locations of climatological station and Atlantic Forest fragments located in Minas 
Gerais, Brazil. 
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Figure S2. Pearson correlations between soil variables and depth (0–20 cm and 20–40 cm). 
Dark blue circles indicate positive correlations and dark red circles indicate negative 
correlations. The size of the circle indicates the strength of the correlation. For abbreviation of 
soil see Material and Methods. 
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Figure S3. Pearson correlations between forest cover area using radii of 500, 1000, and 2000 
m, for the year 1985, 2002 and 2017. Dark blue circles indicate positive correlations and dark 
red circles indicate negative correlations. The size of the circle indicates the strength of the 
correlation.  
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Figure S4. Pearson correlations between forest cover area, Edge distance and Forest Size, 
Abandonment Year. Dark blue circles indicate positive correlations and dark red circles indicate 
negative correlations. The size of the circle indicates the strength of the correlation.  
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Figure S5. Pearson correlations between for annual precipitation (Precp) and climatic water 
deficit (CWD) for 1, 2, 3 and 4 years before the measurement year, number of months with less 
than 100 mm of rainfall (less 100), precipitation in the three driest months (Precp dry), and 
average annual temperature (Temp). Blue circles indicate positive correlations and red circles 
indicate negative correlations. The size of the circle indicates the strength of the correlation.  
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Figure S6. Pearson correlations between for landscape variables. Blue circles indicate positive 
correlations and red circles indicate negative correlations. The size of the circle indicates the 
strength of the correlation.  
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Figure S7. Pearson correlations highly correlated (greater than 90). Blue circles indicate 
positive correlations and red circles indicate negative correlations. The size of the circle 
indicates the strength of the correlation.  
 

 


