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ABSTRACT 

 

LEGESE, Mindaye Teshome, D.Sc., Universidade Federal de Viçosa, July 2023. Decision 
support tools for the management in a Dry Afromontane Forest in Ethiopia. Advisor: 
Carlos Miquelino Moreira Eletto Torres. Co-advisors: Evaldo Muñoz Braz and Patricia Povoa 
de Mattos. 
 
 
Ethiopia is one of the tropical countries endowed with diverse forest formations. These forests 

provide large amounts of wood that can be used for furniture, construction, and domestic energy 

consumption. However, the gap between the supply and demand of wood is huge and 

increasing. This growing demand could be met by the sustainable production of wood from the 

existing natural forests. This requires up-to-date information on forest structure, diameter 

growth rate, standing volume, cutting cycle, and minimum logging diameter of trees. 

Unfortunately, such information is not available for trees from the Chilimo Dry Afromontane 

Forest in Ethiopia. To address this gap, this study aimed to i) develop a nonlinear mixed-effects 

model for predicting Juniperus procera tree height (chapter one); ii) develop mixed-species 

allometric equations to quantify stem volume and biomass of trees from the Chilimo Dry 

Afromontane Forest (chapter two), and iii) ensuring sustainable wood harvesting from J. 

procera trees in the Chilimo Dry Afromontane Forest (chapter three). For the first chapter, a 

total of 1,215 height and diameter measurements were recorded on 101 sample plots. The best-

fitting base model was selected after a comparison of fourteen models. We also included the 

sample plot as a random effect in non-linear mixed effect modeling. The effect of adding stand 

variables on height prediction performance was also evaluated. The bias, root mean square 

error, and AIC were computed and used as the model evaluation criteria. We found that the 

Michaelis-Menten model best represented the height-diameter allometry of J. procera trees. 

The best mixed-effects model (M1) improved the height prediction performance with the 

RMSE and bias values of 2.692 and 0.043, respectively. The addition of the quadratic mean 

diameter and stem density slightly improved the prediction performance of the best-mixed 

effects model. The calibration response revealed that the systematic selection of the three largest 

diameter trees in a sample plot is the best sampling alternative to estimate the random effects 

and predict the height of J. procera trees from the new plots or stands. For the second chapter, 

we used a total of 194 sample trees from seven dominant tree species (Juniperus procera, 

Podocarpus falcatus, Allophylus abyssinicus, Olea africana ssp. Cuspidata, Olinia rochetiana, 

Rhus glutinosa, and Scolopia theifolia). Various volume and biomass equations were fitted 

using robust linear and nonlinear regression models. Model comparison indicated that the best 



 

model to estimate stem volume was 𝑙𝑛(𝑣)=−9.909 +  0.954 𝑙𝑛(𝑑𝑏ℎ2ℎ𝑡), whereas the best 

model to estimate biomass was 𝑙𝑛(𝑏) =−2.983 +  0.949 𝑙𝑛(𝜌𝑑𝑏ℎ2ℎ𝑡). These equations 

explained over 85 % of the variations in the stem volume and biomass measurements. The mean 

density and basal area of trees with dbh ≥ 2 cm were 24.4 m2 ha-1 and 631.5 stems ha-1, 

respectively. Based on the newly developed equations, the forest has on average 303.0 m3 ha-1 

standing volume of wood and 283.8 Mg ha-1 biomass stock. The newly developed allometric 

equations derived from this study can be used to accurately determine the stem volume, 

biomass, and carbon storage in the Afromontane forests in Ethiopia and elsewhere with similar 

stand characteristics and ecological conditions. By contrast, the generic pan-tropical and other 

local models appear to provide biased estimates and are less appropriate for dry Afromontane 

forests in Ethiopia. For the third chapter, we established 165 plots (each 400 m2) in the forest 

and collected vegetation data. We also conducted growth ring measurements on 12-disc 

samples from J. procera trees. We determined the diameter growth rate, the current and mean 

annual increments, the minimum logging diameter, and the cutting cycle. By using the stand 

projection table, we estimated the harvestable volume of wood by combining four minimum 

logging diameters and five cutting cycles. The findings revealed that J. procera tree species has 

a mean density of 183 stems ha-1, a total basal area of 12.1 m2 ha-1, and 98.9 m3 ha-1 standing 

volume of wood. The population exhibited an inverted J-shape diameter distribution pattern. 

The mean annual diameter growth rate ranges between 0.50 and 0.65 cm yr-1, with an overall 

mean of 0.59 cm yr-1. The current annual increment occurred at 50 years when trees reached 30 

cm in diameter, while the mean annual increment occurred at 90 years when trees attained 50 

cm in diameter. After evaluating various scenarios, we found that a minimum logging diameter 

of 40 cm and a cutting cycle of 15 years provided the highest harvestable volume of wood (22 

m3 ha-1) and volume increments (1.4 m3 ha-1 yr-1). Additionally, this scenario allows for the 

harvesting of 9% of the standing J. procera trees while maintaining a larger proportion (91%) 

of the existing standing trees in the forest. Based on our findings, we concluded that the Chilimo 

Dry Afromontane Forest is well stocked and has a substantial amount of harvestable wood 

volume, which could help Ethiopia meet its growing national wood demand. Our study provides 

valuable information for policy makers to formulate regulations for wood harvesting from J. 

procera trees in Chilimo forest. 

 
 

Keywords: Wood production. Forest structure. Allometeric equations. Dendrochronology. 

Mixed models. 



 

RESUMO 

 

LEGESE, Mindaye Teshome, D.Sc., Universidade Federal de Viçosa, julho de 2023. 
Ferramentas de apoio à decisão para o manejo em uma Florestas Seca Afromontana  na 
Etiópia. Orientador: Carlos Miquelino Moreira Eleto Torres. Coorientadores: Evaldo Muñoz 
Braz e Patricia Póvoa de Mattos. 

 

A Etiópia é um dos países tropicais dotados de diversas formações florestais. Estas florestas 

fornecem grandes quantidades de madeira que podem ser utilizadas para mobiliário, construção 

e consumo doméstico de energia. No entanto, a diferença entre a oferta e a procura de madeira 

é enorme e está a aumentar. Esta procura crescente poderia ser satisfeita através da madeira 

produzida de forma sustentável a partir das florestas naturais existentes. Para tal, é necessária 

informação actualizada sobre a estrutura da floresta, a taxa de crescimento, o volume, o ciclo 

de corte e o diâmetro mínimo de corte das árvores. Infelizmente, essa informação não está 

disponível para a Floresta Afromontana de Chilimo, na Etiópia. Para colmatar esta lacuna, este 

estudo teve como objetivo i) desenvolver um modelo não linear de previsão da altura das 

árvores de Juniperus procera com efeitos mistos (capítulo um); ii) desenvolver equações 

alométricas de espécies mistas para quantificar o volume do tronco e a biomassa das árvores da 

floresta seca de Chilimo Afromontane (capítulo dois), e iii) assegurar a exploração sustentável 

da madeira das árvores de J. procera da floresta seca de Chilimo Afromontane (capítulo três). 

Para o primeiro capítulo, um total de 1.215 medições de altura e diâmetro foram registradas em 

101 parcelas estabelecidas aleatoriamente. O modelo básico de melhor ajuste foi escolhido após 

uma comparação de quatorze modelos. Foi efetuada a amostragem da parcela como um efeito 

aleatório na modelagem não linear de efeitos mistos. O efeito da adição de variáveis florestais 

no desempenho da previsão de altura também foi avaliado. O bias, a raiz quadrada do erro 

médio e o AIC  foram calculados e usados como critérios de avaliação do modelo. O modelo 

de Michaelis-Menten representou melhor a alometria altura-diâmetro de árvores de J. procera. 

O melhor modelo de efeitos mistos (M1) melhorou o desempenho da predição da altura com os 

valores de RMSE e bias de 2,692 e 0,043, respectivamente. A adição do diâmetro médio 

quadrático e da densidade do caule melhorou ligeiramente o desempenho de previsão do 

modelo de efeitos mistos. A calibração revelou que a seleção sistemática das três árvores de 

maiores diâmetros em uma parcela amostral foi a melhor alternativa de amostragem para 

estimar os efeitos aleatórios e prever a altura das árvores de J. procera das novas parcelas ou 

florestas. Para o segundo capítulo, usou-se um total de 194 árvores de amostra de sete espécies 

de árvores dominantes (Juniperus procera, Podocarpus falcatus, Allophylus abyssinicus, Olea 



 

africana ssp. Cuspidata, Olinia rochetiana, Rhus glutinosa, e  Scolopia theifolia). Diversas 

equações de volume e biomassa foram ajustadas usando modelos de regressão lineares e não 

lineares robustos. A comparação de modelos indicou que o melhor modelo para estimar o 

volume do caule foi 𝑙𝑛(𝑣)=−9.909 +  0.954 𝑙𝑛(𝑑𝑏ℎ2ℎ𝑡), enquanto o melhor modelo para 

estimar a biomassa foi 𝑙𝑛(𝑏) =−2.983 +  0.949 𝑙𝑛(𝜌𝑑𝑏ℎ2ℎ𝑡). Essas equações explicaram 

mais de 85% das variações nas medidas de volume e biomassa do caule. A densidade média e 

a área basal das árvores com DAP ≥ 2 cm foram 24,4 m2 ha-1 e 631,5 fustes ha-1, 

respectivamente. Com base nas equações desenvolvidas, a floresta teve em média 303,0 m3 ha-

1 de volume e 283,8 Mg ha-1 de estoque de biomassa. As equações alométricas desenvolvidas 

derivadas deste estudo podem ser usadas para determinar com precisão o volume do caule, a 

biomassa e o armazenamento de carbono nas florestas afromontanas na Etiópia e em outros 

lugares com características de povoamento e condições ecológicas semelhantes. Em contraste, 

os modelos pantropicais genéricos e outros modelos locais parecem fornecer estimativas 

tendenciosas e são menos apropriados para florestas secas afromontanas na Etiópia. Para o 

terceiro capítulo, estabeleceu-se 165 parcelas (cada 400 m2) na floresta e coletamos dados de 

vegetação. Também realizou-se medições de anéis de crescimento em amostras de 12 discos de 

árvores J. procera. A taxa de crescimento do diâmetro, os incrementos anuais atuais e médios, 

o diâmetro mínimo de corte e o ciclo de corte foram determinadas. O volume de madeira 

explorável combinando quatro diâmetros mínimos de corte e cinco ciclos de corte foram 

estimados. Os resultados revelaram que a árvore J. procera tem uma densidade de 183 hastes 

há-1, uma área basal total de 12,1 m2 há-1 e um volume em pé de 98,9 m3 há-1. As árvores 

seguiram um padrão de distribuição de diâmetro em forma de J invertido. A taxa média anual 

de crescimento do diâmetro varia entre 0,50 e 0,65 cm por ano, com uma média geral de 0,59 

cm por ano. O máximo incremento corrente anual  ocorreu aos 50 anos, quando as árvores 

atingiram 30 cm de diâmetro, enquanto o incremento médio anual ocorreu aos 90 anos, quando 

as árvores atingiram 50 cm de diâmetro. O diâmetro mínimo de corte de 40 cm e um ciclo de 

corte de 15 anos forneciam o maior volume de madeira explorável (21 m3 há-1) e incrementos 

de volume (1,4 m3 há-1 anno-1). Além disso, este cenário permite a colheita de 9 % das árvores 

de J. procera enquanto mantém uma proporção maior (91%) das árvores em pé existentes na 

floresta. Com base em nossas descobertas, concluímos que a Floresta Afromontana Seca de 

Chilimo é bem abastecida e possui uma quantidade substancial de volume de madeira que pode 

ser colhida, o que poderia ajudar a Etiópia a atender sua crescente demanda nacional de madeira. 

Nosso estudo fornece informações valiosas para os formuladores de políticas formularem 

regulamentos para a colheita de madeira de árvores J. procera na floresta de Chilimo. 



 

 

Palavras-chave: Produção madeireira. Estrutura da floresta. equações alométricas. 
Dendrocronologia. Modelo misto. 
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General introduction 

Tropical forests are home of more than a half of the Earth’s biodiversity, contains about 40% 

of global terrestrial carbon, and have an essential influence on the global climate system 

(BACCINI; WALKER; CARVALHO; FARINA et al., 2017; DEVARAJU; BALA; NEMANI, 

2015; DI MARCO; WATSON; CURRIE; POSSINGHAM et al., 2018; LEWIS; EDWARDS; 

GALBRAITH, 2015; MOHAMAD, 2022; PILLAY; VENTER; ARAGON‐OSEJO; 

GONZÁLEZ‐DEL‐PLIEGO et al., 2022; SULLIVAN; TALBOT; LEWIS; PHILLIPS et al., 

2017). These forests cover about 7% of the land surface and are habitat to more than half of the 

world’s biotic species (GALLERY, 2014). Tropical forests help rural food security through 

different non-timber forest resources (food, medicines, and fibers) collected as a sustainable 

livelihood (FAO, 2020b; ROBERTS; BOIVIN; KAPLAN, 2018). Furthermore, these forests 

provide fuelwood for an estimated 2.4 billion rural people in less developed countries and the 

main material for the houses of at least 1.3 billion people worldwide (RAMETSTEINER; 

WHITEMAN, 2014). According to a recent study, a large number of people in developing 

countries depend on forests as a source of income, livelihoods, and well-being (FAO, 2018; 

ROBERTS; BOIVIN; KAPLAN, 2018). 

Ethiopia has a total land area of 1.12 million hectares of which about 15.5% (17.35 million 

hectares) is covered by forests including plantations, woodlands, and high forests (BEKELE; 

TESFAYE; MOHAMMED; ZEWDIE et al., 2015; FRANKS; HOU-JONES; FIKREYESUS; 

SINTAYEHU et al., 2017). The forests in Ethiopia exhibit a higher complexity in terms of 

structure and composition, resulting from the diverse biophysical, social conditions, and 

disturbance history (TEKETAY; LEMENIH; BEKELE; YEMSHAW et al., 2010). These 

forests provide wood for construction, furniture, household energy, and wood-based industries 

(TEKETAY, 2001a). The economic contribution of these forests (including the direct and non-

direct use values) to the national GDP (Gross domestic product) was estimated at 18.8% in 

2012/13 (NUNE; KASSIE; MUNGATANA, 2013). It was also estimated that 92,000 ha-1 of 

the forest is lost annually (MOGES; ESHETU; NUNE, 2010) due to agricultural expansion 

(both subsistence and commercial), fuel-wood, illegal logging, and forest fire (BEKELE; 

TESFAYE; MOHAMMED; ZEWDIE et al., 2015). 

The Dry evergreen Afromontane forest is widely dispersed in central, south-eastern, eastern, 

northern, and southern highlands of Ethiopia (FRIIS; DEMISSEW; BREUGEL, 2010). This 

forest has ecological significance, being the largest remnant forests in the country which 

provides habitat for many endangered species and stores a large amount of carbon (BEKELE, 
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1994; GEBEYEHU; SOROMESSA; BEKELE; TEKETAY, 2019a; GIRMA; SOROMESSA; 

BEKELE, 2014). These forests also support the livelihoods of many people by providing 

diverse forest products (ASFAW; LEMENIH; KASSA; EWNETU, 2013; GOBEZE; 

BEKELE; LEMENIH; KASSA, 2009; SHIFERAW; LIMENIH; GOLE, 2019). These forests 

are also endowed with various native timber tree species such as Juniperus procera, 

Podocarpus falcatus, Olea hochstetteri, among others (e.g. DE VLETTER, 1991; 

DESALEGN; TEKETAY; GEZAHGNE; ABEGAZ, 2012). Nevertheless, there is a huge gap 

between the supply and demand for wood products in Ethiopia (MEFCC, 2017). For example, 

the wood consumption in 2013 reached a total of 124 million m3 in Ethiopia. Projections 

indicate that within the next two decades, the demand for wood products will rise by around 

27%, reaching an annual consumption of 158 million m3 by 2033. During this period there will 

be a 4.4 million m3 gap in the supply of wood which will be required to meet the growing needs 

of Ethiopia's economy (MEFCC, 2017). This indicates the urgent need to establish large scale 

plantation forests, expand forest industry, and adopt sustainable harvesting practices of wood 

from existing natural forests and wood lands. 

Forest management planning requires understanding of the current stand structural conditions, 

i.e., basal area, standing wood volume, and tree density of the forest that will be managed, and 

a long term evaluation of the forest resources after management interventions have been applied 

(BETTINGER; BOSTON; SIRY; GREBNER, 2016). This requires detailed information about 

the forest stand’s characteristics. Various forest management tools have been developed for 

different tree species to generate basic information such as the diameter growth pattern, 

diameter distribution, stem volume, and biomass and carbon stock (e.g., CANETTI; BRAZ; DE 

MATTOS; BASSO, 2021; CHAVE; RÉJOU‐MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al., 

2014; MUGASHA; BOLLANDSÅS; EID, 2013; SCOLFORO; SCOLFORO; THIERSCH; 

THIERSCH et al., 2017; TESHOME; TORRES; SILESHI; DE MATTOS et al., 2022). These 

tools are indispensable to determine the potential of a given forest stand and make informed 

forest management decisions.  

In Ethiopia, forest resource management efforts have been constrained by the lack of 

fundamental tools that can provide accurate estimates of basic information such as the diameter 

growth rate, standing volume of wood, the total height of trees, stand productivity and other 

essential information’s (TEKETAY; LEMENIH; BEKELE; YEMSHAW et al., 2010). This 

had an impact on the efforts to develop a sustainable plan for managing and utilizing the natural 

forests in Ethiopia. These problems entail the need to develop appropriate and site-specific 

management tools for the diverse trees from the natural forests of Ethiopia. In this study, we 
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developed decision support tools for the management of Juniperus procera trees from the 

Chilimo Dry Afromontane Forest. The output of this study will specifically help forest 

managers and researchers by providing site-specific information about the potentials in the 

Chilimo Dry Afromontane Forest and timber harvesting possibilities. Furthermore, it will 

enable policy makers to formulate a timber harvesting regulation and ensure domestic wood 

production. 

Objectives 

General Objective 

The general objective of this study is to develop forest management tools that will guide timber 

harvesting decisions in the Chilimo Dry Afromontane Forest in Ethiopia.  

Specific Objectives 

• To develop a mixed-effects height prediction model for the Juniperus procera tree from 
the Chilimo Dry Afromontane Forest 
 

• To develop mixed species allometric equation to quantify the stem volume and tree 
biomass for the dominant trees from the Chilimo Dry Afromontane Forest 
 

• To ensure sustainable wood harvesting from Juniperus procera trees from the Chilimo 
Dry Afromontane Forest in Ethiopia 
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Literature review 

Ethiopia is a mountainous country that spans between 3° and 15° N latitude and 33° to 

48° E longitude (EMA, 1988). It is bordered by Sudan to the West, Djibouti to the east, Eritrea 

to the north and southeast, Somalia to the southeast, and Kenya to the south. Ethiopia is the 

most populous country (over 120 million people) in Eastern Africa and the second most 

populous in the entire continent after Nigeria. The population is estimated to be growing at a 

rate of 2.7 percent per annum on a fixed land area of 1.1 million km2 (CSA, 2017). 

 

Figure 1: Map of Africa and Ethiopia with regional states 

Ethiopia is an ecologically diverse country, with altitudes ranging from 125 meters 

below sea level in the Dallol to 4,620 meters above sea level on Rasdashen (EMA, 1988). The 

prevailing marked contrasts in altitudes and the geographic position close to the equator and 

the Indian Ocean enable the country to experience large spatial variations in temperature and 

precipitation (FAZZINI; BISCI; BILLI, 2015). The climate of Ethiopia is mainly influenced by 

the seasonal migration of the Intertropical Convergence Zone (ITCZ), atmospheric circulation 

as well as by the complex topography of the country. Landscapes experience a variety of 

climates from desert climates to equatorial mountain types.  The climate in the highlands (over 

1800 m) is moderate and the annual precipitation ranges between 800 to  
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2200 mm. The lowlands are hot with annual rainfall ranging between 200 and 800 mm 

(TEDLA; LEMMA, 1999). Agriculture is the main economic activity, accounting for 45 % of 

GDP. Of the total area, 60 % is reported to be suitable for agriculture. The main products are 

teff (Eragrostis tef), sorghum (Sorghum bicolor (L.) Moench), barley (Hordeum vulgare), field 

peas (Pisum sativum), chickpeas (Cicer arietinum L.), niger seed (Guizotia abyssinica), linseed 

(Linum usitatissimum), enset (Ensete ventricosum), cotton (Gossypium herbaceum), and coffee 

(Coffee arabica). Small-holder farming is predominant, accounting for more than 90 % of the 

agricultural area and 95 % of total area under crop (TEDLA; LEMMA, 1999). 

Ethiopia plays a crucial role as a center of genetic diversity for a variety of crops 

(EGZIABHER, 1991). It is one of the eight centers in the world where crop plant diversity is 

exceptionally high, and where various crops, such as wheat (Triticum aestivum), barley 

(Hordeum vulgare), sorghum (Sorghum bicolor (L.) Moench), and field peas (Pisum sativum), 

were domesticated (ENGELS; ENGELS; HAWKES; HAWKES et al., 1991). The flora of the 

country comprises about 6,500 - 7,000 species of higher plants, of which about 12% are 

endemic (EGZIABHER, 1991). Historical evidence suggests that over 40 % (between 450,000 

and 500,000 km2) of the land area was once covered with high forests (HUFFNAGEL, 1961). 

However, currently only 15.5% (17.35 million ha) of the land area is covered with forests 

(BEKELE; TESFAYE; MOHAMMED; ZEWDIE et al., 2015; FRANKS; HOU-JONES; 

FIKREYESUS; SINTAYEHU et al., 2017). These forests provide wood for construction, 

furniture, household energy, and wood-based industries (TEKETAY, 2001b).. 

Despite this fact, much of the original forest in the highlands was lost due to the 

population growth which in turn resulted in extensive wood harvesting for house construction 

and energy, agricultural expansion (shifting cultivation, large-scale investment, and the spread 

of sedentary agriculture), resettlement and livestock grazing (BEKELE; TESFAYE; 

MOHAMMED; ZEWDIE et al., 2015; RUSS, 1979). The deforestation rate was estimated at 

92,000 ha-1 yr-1 in Ethiopia (MOGES; ESHETU; NUNE, 2010). There has been a considerable 

effort by the government to reverse the loss of forests. The government clearly articulated the 

significance of forest destruction in the Climate Resilient Green Economy (CRGE) document 

and recommended, as viable solutions, the use of fuel-efficient stoves; sustainable forest 

management, increasing afforestation, and reforestation activities; and promoting the 

rehabilitation of degraded lands (FDRE, 2011).  
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Natural vegetation of Ethiopia 

The natural vegetation of Ethiopia showed higher complexity in structure and 

composition resulting from the diverse biophysical, social conditions, and disturbance history 

(TEKETAY; LEMENIH; BEKELE; YEMSHAW et al., 2010). Various efforts have been made 

to classify the natural vegetation types of Ethiopia (e.g. CHAFFEY, 1979; FRIIS; DEMISSEW; 

BREUGEL, 2010; LOGAN, 1946). According to a study by FRIIS; DEMISSEW e BREUGEL 

(2010) the natural vegetation of Ethiopia is classified as (1) desert and semi-desert scrubland, 

(2) Acacia-Commiphora woodland and bushland, (3) wooded grassland of the western 

Gambela, (4) Combretum-Terminalia woodland and wooded grassland, (5) Dry evergreen 

Afromontane forest and grassland complex, (6) Moist evergreen Afromontane forest, (7) 

Transitional rainforest, (8) Ericaceous belt (9) Afroalpine belt, (10) the riverine vegetation, (11) 

Freshwater lakes, lakes shores, marshes, swamps, and floodplains vegetation, and (12) salt-

water lakes, lake shores, salt marshes and pan vegetation. Here, we provide specific details for 

the major natural forest vegetation types (Figure 2). 

 

Figure 2: Natural vegetation types of Ethiopia following Friis et al. (2010) 
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Dry evergreen Afromontane Forest and grassland complex 

This is a very complex vegetation type occurring between 900 and 3200 m altitudinal 

range (EGZIABHER, 1991) and has an average annual temperature and rainfall of 14-25°C and 

500-1500 mm, respectively (TEKETAY, 2001b). It is widely distributed in central, south-

eastern, eastern, northern, and southern highlands (FRIIS; DEMISSEW; BREUGEL, 2010). It 

is dominated by both coniferous and broadleaved species i.e., Juniperus procera, Podocarpus 

falcatus, Olea hochstetteri, Prunus africana, Apodytes dimidiata, Allophylus abyssinicus, Ficus 

sur, and others (e.g. GEBEYEHU; SOROMESSA; BEKELE; TEKETAY, 2019b; SIRAJ, 

2019). This forest is the habitat for many wild animals including leopard, Menelik's bushbuck, 

warthog, Bohor reedbuck, olive baboon, and hyenas (see HUN GIRMA; MAMO; ERSADO, 

2012; SOROMESSA; KELBESSA, 2013).  

Photo: Dry Afromontane Forest. Source: the author (2017) 

Despite this fact, it is one of the heavily deforested and degraded vegetation types due 

to its location in areas suitable for settlement and agriculture (LEMENIH; BONGERS, 2011). 

The highlands of Ethiopia where this forest is dominantly found were inhabited by humans for 

millennia and heavily threatened by agricultural expansion, free grazing, illegal logging, 

fuelwood collection, illegal settlements inside the forest, and fire (BEKELE; TESFAYE; 

MOHAMMED; ZEWDIE et al., 2015; RUSS, 1979). Historical evidence showed that 

commercial exploitation in the form of concessions began in this forest type (RUSS, 1979). The 

logging practices in this forest type were not supported by the knowledge of the population 

structure, growth rate, minimum logging diameter, and cutting cycles of specific tree species 

(AMENTE; HUSS; TENNIGKEIT; YEMSHAW, 2010; RUSS, 1979). Instead, individual 

businessmen were granted concessions by the government and harvested whatever they thought 

profitable. This unregulated practice, coupled with the population growth in the highlands, 

severely degraded the forest, resulting in the selective logging of commercially important 

timber tree species.  
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Moist evergreen Afromontane Forest 

This vegetation type is found in the humid regions of the Southwestern and Southeastern 

highlands of Ethiopia, at elevations ranging between 1000 and 2600 m (BEKELE, 1993; FRIIS; 

DEMISSEW; BREUGEL, 2010; SENBETA; DENICH, 2006). The area has an average annual 

temperature of 15 - 20°C and receives annual rainfall ranging from 700 to 2500 mm, with 

rainfall occurring for 10 months each year (SENBETA; DENICH, 2006; TEKETAY, 2001b). 

This vegetation type is characterized by a high level of diversity in terms of its species 

composition, structure, and habitat types. A study conducted by SENBETA e DENICH (2006) 

in five forest fragments reported a woody plant density ranging from 9,309 to 69,130 

individuals per hectare, basal area ranging from 46 to 54 m2 per hectare, number of species 

ranging from 146 to 374, and number of families ranging from 57 to 91. It is also recognized 

as the natural habitat of the wild coffee (Coffee arabica) populations (SENBETA; DENICH; 

BOEHMER; WOLDEMARIAM et al., 2007).  

Photo: Moist Afromontane rainforest. Source: the author (2010) 

The most frequent tree species are Aningeria adolfi-friendercii, Podocarpus falcatus, 

Trilepisium madagascariense, Olea welwitschii, Albizia gummifera, Milletia ferruginea, 

Polyscias fulva, Schefflera volkensii, Schefflera abyssinica, Bersama abyssinica, Mimusops 

kummel, Syzygium guineense, Sapium ellipticum, and several others (e.g. GOLE, 2003b; 

LULEKAL; KELBESSA; BEKELE; YINEGER, 2008; SENBETA; DENICH, 2006). It is an 

important source of timber and non-timber forest products including Cororima (Aframomu 

corrorima), Ginger (Zingiber officinale), black pepper (Piper nigrum), Turmeric (Curcuma 

longa), coffee (Coffee arabica), wild edible foods, medicinal plants, and honey. It is home to 

various wild animals including lion, leopard, black leopard, black common jackal, wild dog, 
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wild cat, bush pig, giant forest hog, warthog, colobus monkey, olive baboon, grey duiker, 

bushbuck, and various bird species (SENBETA; DENICH, 2006).  

According to ABEBE e HOLM (2003b), this forest type also experienced commercial 

selective logging in the past. The commonly harvested tree species were Aningeria adolfi-

friederici, Antiaris toxicaria, Cordia africana, Morus mesozygia, and Ekebergia capensis. The 

harvesting was carried out through concessions granted to individual businessmen (mainly 

foreigners) and a few government factories, using traditional axes. The applied harvesting 

method severely affected the forest. Similar to other forests, they are constantly at risk from 

settlement and agricultural expansion, commercial tea plantations, modifications of the forest 

due to the management of coffee, illegal logging, wildfires, and forest grazing (GOLE, 2003a; 

LULEKAL; KELBESSA; BEKELE; YINEGER, 2008; SOROMESSA; KELBESSA, 2013). 

Combretum-Terminalia woodland and wooded grassland 

This vegetation type is predominantly found in the Northwestern, Western, and 

Southwestern parts of the country, at altitudes ranging from 500 to 1900 m (AWAS, 2007; 

FRIIS; DEMISSEW; BREUGEL, 2010; LEMENIH; KASSA, 2011). It comprised diverse 

species of Acacia, Boswellia, and Commiphora, which are valued for their commercial gum 

and resin products (TADESSE; DESALEGN; ALIA, 2007). The products from these tree 

species, such as frankincense and gum Arabic are crucial to supporting the livelihoods of the 

local communities and contribute significantly to the national economy (ESHETE; TEKETAY; 

HULTEN, 2005; LEMENIH; BONGERS, 2011). Ethiopia ranks as the second-largest producer 

and exporter of gum and resin (LEMENIH; KASSA, 2011). The export of gum and resin 

accounts for approximately 0.54 to 0.73 % of Ethiopia’s total export revenue. There has been a 

steady increase in the production, export volume, and revenue earnings from gum and resin-

bearing trees (LEMENIH, 2005; LEMENIH; KASSA, 2011), which can be attributed to the 

growing involvement of private enterprises in the production, processing, and exportation 

processes. 

The gum and resin business are estimated to employ about 25,000 - 35,000 individuals 

annually at the national level. The average annual cash income per person from tapping, gum, 

resin collection, and cleaning and grading was estimated to be 172 USD and 165 USD, 

respectively (LEMENIH; KASSA, 2011). Improper tapping and overharvesting, overgrazing 

by livestock, increasing forest fire, and conversion to other land use by commercial farmers 

(such as sesame and cotton producers), and smallholder farmers due to government-led 

resettlement programs are among the major challenges facing this forest type (ESHETE; 
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TEKETAY; HULTEN, 2005; GEBREHIWOT; MUYS; HAILE; MITLOEHNER, 2002; 

LEMENIH; FELEKE; TADESSE, 2007). Additionally, the lack of regeneration and 

recruitment of B. papyrifera, the major resin-bearing tree species, is the other challenge in this 

forest type (GROENENDIJK; ESHETE; STERCK; ZUIDEMA et al., 2012).  

Photo: Combretum-Terminalia broadleaved woodland. Source: the author (2012) 

Acacia-Commiphora woodland and bushland 

This vegetation type is mainly found in the southern, eastern parts of the country as well 

as in the central Rift Valley with an altitudinal range between 900 and 1900 m (FRIIS; 

DEMISSEW; BREUGEL, 2010). The dominant trees and shrubs in this forest are known for 

their drought-resistant qualities and small and deciduous leaves. For example, WORKU; 

TEKETAY; LEMENIH e FETENE (2012) documented a total of 64 woody species belonging 

to 23 families and 31 genera from Borana in Southern Ethiopia. The most common tree species 

are Acacia senegal, A. seyal, A. tortilis, Balanites aegyptiaca, Boswellia microphylla, B. 

neglecta, B. rivae, Commiphora africana, C. boranensis, C. cilliata, C. monoica, C. serrulate 

Maytenus senegalensis and Ziziphus mucronata (TEKETAY, 2001b). This woodland is rich 

with gum and resin-producing Acacia, Boswellia, and Commiphora species which are the 

sources of foreign currency as they are exported to more than 40 countries (LEMENIH, 2005). 

It is also the natural habitat for various wild animals such as oryx, zebra, hartebeest, kudu, and 

gazelle, and has become a popular destination for tourists and recreational activities. Despite 

its significance, this woodland faces several challenges, including agricultural expansion, 

overgrazing, unsustainable fuelwood collection, and charcoal production. It is threatened by 

subsistence and commercial agricultural expansion, drought, free grazing by livestock, wildfire, 

bush encroachment, and invasive tree species.  
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Photo: Acacia-Commiphora small-leaved woodland (Source: Adefires Worku 2006) 

Forest management practices  

The concept of natural forest management is not new in Ethiopia. Several efforts have 

been made to develop, conserve and manage forest resources (TEKETAY; LEMENIH; 

BEKELE; YEMSHAW et al., 2010). Most of the management practices mainly dealt with 

preventing further degradation and deforestation, as well as restoring degraded lands. Here, we 

presented the prominent forest development and management measures that have been 

practiced in Ethiopia: 

Plantation forest development as a buffer to natural forests 

This is one of the earliest forest management interventions in Ethiopia dates to the turn 

of the nineteenth century, during the reign of Emperor Menelik II (1888-1892). Historical 

records indicate that modern plantation forestry began during this period, with the introduction 

of various fast-growing exotic tree species, such as Eucalyptus spp., Acacia spp., and Pinus 

spp. aimed at addressing the shortage of fuel and construction wood in Addis Ababa and nearby 

towns (RUSS, 1979). Consequently, large areas of plantation forests in the form of peri-urban 

plantations, catchment protection plantations, smallholder plantations, industrial plantations, 

and farm forests have been established through government-led programs. According to a 

recent study (FAO, 2020a), plantation forests covered a total area of 1,200,000 ha in Ethiopia. 

The plantation forests mainly consist of exotic and indigenous trees such as Eucalyptus spp., 

Cupressus lusitanica, Pinus patula, Grevillea robusta, Juniperus procera, and other tree 

species (BEKELE, 2011). The plantations were usually established from potted seedlings at a 

density ranging between 1600 and 4444 seedlings ha-1 (BEKELE, 2011). The productivity of 

planted trees varies considerably depending on site factors, the intensity of applied silvicultural 
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treatments (e.g. thinning), and the rotation cycle (ÖRLANDER, 1986; PUKKALA; 

POHJONEN, 1990). For example, Orlander stated that the productivity of Eucalyptus varies 

between 40 and 55 m3 ha-1 y-1 for stands managed for 5-10 years, and about 30 m3 ha-1 y-1 for 

stands managed over 10 years rotation cycle. Similarly, the productivity of Pinus patula and 

Cupressus lusitanica also varies between 18 and 25 m3 ha-1 y-1 for stands managed for a 20 to 

25 years rotation cycle. 

Participatory Forest Management (PFM) 

Natural forests and woodland resources are considered state property in Ethiopia. The 

communities who live around the forest were considered as outsiders and not involved in the 

management of the forest resources (GOBEZE; BEKELE; LEMENIH; KASSA, 2009; 

LEMENIH; BEKELE, 2008). The government is responsible for the management and 

protection of natural forests. This non-participatory approach leads to the destruction and 

deforestation of large areas of natural forests in different parts of the country (AMENTE, 2006a; 

LEMENIH; BEKELE, 2008). The prevailing problem forced the government to introduce 

participatory forest management (PFM), an alternative forest management approach that aimed 

to reduce deforestation and forest degradation without compromising the local community 

interest (ALEMAYEHU, 2007).  

PFM is a collaborative forest management approach in which the government and the 

local communities agreed to protect, manage, and partially utilize the natural forest resources 

on a sustainable basis (GOBEZE; BEKELE; LEMENIH; KASSA, 2009). NGOs introduced 

Participatory Forest Management (PFM) in Ethiopia during the mid-1990s, intending to reduce 

deforestation and degradation while also enhancing community access to and utilization of 

natural forests. The PFM approach involved the development of site-specific management 

plans, which were collaboratively prepared by the state forest agency and the communities 

engaged in PFM (GOBEZE; BEKELE; LEMENIH; KASSA, 2009). Forests under 

Participatory Forest Management are expanding in area coverage in Ethiopia. A more recent 

report revealed that the total area of natural forest under PFM has now reached 2 million hectare 

(EFCCC, 2020). There is evidence that demonstrates the contribution of PFM in reducing 

deforestation and forest degradation and enhancing the social and economic importance of 

forests (GOBEZE; BEKELE; LEMENIH; KASSA, 2009). 
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Area exclosures for forest regeneration 

Area exclosures have been recognized as the practice of excluding degraded land from 

grazing, cultivation as well as cutting trees and shrubs (MENGISTU; TEKETAY; HULTEN; 

YEMSHAW, 2005). This practice has become very common in Ethiopia, due to the impressive 

improvement observed in productivity and the reduction of soil erosion. Furthermore, it is the 

cheapest and fastest rehabilitation mechanism (BIRHANE; TEKETAY; BARKLUND, 2006), 

to foster native plant restoration (BIRHANE, 2006; MEKURIA; VELDKAMP, 2012; 

MENGISTU; TEKETAY; HULTEN; YEMSHAW, 2005), increasing carbon storage 

(MEKURIA; VELDKAMP; HAILE, 2009), reducing soil erosion (MEKURIA; VELDKAMP; 

HAILE; GEBREHIWOT et al., 2009), improving soil properties (ABAY; TEWOLDE-

BERHAN; TEKA, 2020; MEKURIA, 2013), and improving biomass production (MEKURIA; 

VELDKAMP, 2012; REDA; KEBEDE; KAHSAY; GEBREHIWOT, 2020). In the last three 

decades, thousands of hectares of degraded forests and communal lands were closed from 

human and livestock intervention in various parts of Ethiopia.  

Major challenges of the management practices 

Despite the various forest management efforts mentioned, the natural forests are 

unsustainably used and products are sold on informal markets (MEFCC, 2018). The natural 

forest resources have suffered from a lack of proper management plans. Most of the natural 

forests were freely accessed by local communities and converted to agricultural lands, grazing 

lands, and settlements (BEKELE; TESFAYE; MOHAMMED; ZEWDIE et al., 2015). The 

most commercially attractive timber trees were selectively logged with very few restoration 

efforts in the past (ABEBE; HOLM, 2003b). The logging practice was not based on the 

knowledge of the population structure, growth rate, and rotation cycle of tree species 

(AMENTE; HUSS; TENNIGKEIT; YEMSHAW, 2010; RUSS, 1979). More recently, the 

government initiated a new intervention to legalize timber harvesting on one-third of the 

existing natural forests under the concession of public forest enterprises and existing PFM 

schemes (MEFCC, 2018). However, reliable information on the exact proportion of forests to 

be harvested, the standing stock, growth rate, population structure, minimum cutting diameter, 

cutting cycle, and other essential information is lacking (TEKETAY; LEMENIH; BEKELE; 

YEMSHAW et al., 2010). Above all, decision support tools such as volume equations, growth, 

and biomass models, harvesting regulations, and management plans are lacking for the 

management of natural forests and commercially important tree species in Ethiopia. 
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Dendrochronology: Definition and application in the tropics 

The term dendrochronology is derived from the Greek word “dendro,” meaning tree, 

and “chronology,” meaning knowing the age (FRITTS; SWETNAM, 1989; SPEER, 2010; 

TOUCHAN; HUGHES, 1998). Dendrochronology is the scientific discipline that focuses on 

the study of tree ring formation (SPEER, 2010). It is an interdisciplinary field that applies its 

theory and techniques to various areas of research, including ecology, archaeology, 

climatology, geology, hydrology, and atmospheric sciences (FRITTS, 1991; LEWIS, 1995; 

SPEER, 2010). The diverse applications of dendrochronology make it a valuable area of study 

that enhances our understanding of the natural world. 

There used to be doubts regarding the applicability of dendrochronology in the tropics 

(e.g. LIEBERMAN; LIEBERMAN; HARTSHORN; PERALTA, 1985; WORBES, 1995). This 

was mainly due to the assumption that the lack of seasonality in temperature prevented trees 

from forming annual growth rings. However, the formation of growth rings has been reported 

for various tree species in the tropics (BRIENEN, 2005; ESHETE; STÅHL, 1999; GOURLAY, 

1995; ROZENDAAL; ZUIDEMA, 2011; VERHEYDEN; KAIRO; BEECKMAN; KOEDAM, 

2004; WORBES, 2002). In contrast to temperate conditions, the annual growth rings are 

induced by the seasonality in rainfall patterns (annually occurring dry periods) as well as 

flooding in tropics (WORBES, 1995; WORBES; JUNK, 1999). According to WORBES 

(1995), a dry period of 2 to 3 months and less than 60 mm of precipitation are sufficient to 

induce annual growth rings in tropical trees. Generally, tree ring analysis can be used to study 

the lifetime growth patterns, determine the ages of trees, estimate a minimum age for cutting, 

annual wood formation, productivity, the points of growth reduction, reconstruct the climate, 

and improve the management of trees (e.g. BRIENEN; ZUIDEMA, 2006; COURALET; SASS-

KLAASSEN; STERCK; BEKELE et al., 2005; GEBREKIRSTOS; MITLÖHNER; 

TEKETAY; WORBES, 2008; MATTOS; BRAZ; DOMENE; SAMPAIO et al., 2015; 

ROZENDAAL; ZUIDEMA, 2011; WORBES; STASCHEL; ROLOFF; JUNK, 2003).  

Techniques to identify trees for dendrochronology study 

Dendrochronological studies usually begin with a thorough analysis of the wood 

anatomy of potential tree species. However, not every tree species is appropriate for 

dendrochronology due to variations in the visibility, annual nature, and other critical 

characteristics of their tree rings, which depend on the species, age, and environmental 

conditions (SCHÖNGART, 2008). Overall, any long-lived tree or shrub that produces a 

distinguishable annual growth ring that is cross-datable can be used for a dendrochronological 
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study (COOK; KAIRIUKSTIS, 2013; WORBES, 1995). The fundamental process in 

dendrochronology is to determine the yearly formation of a growth ring. To determine this, 

various methods have been developed such as counting the rings of trees with a known age (e.g. 

COURALET; SASS-KLAASSEN; STERCK; BEKELE et al., 2005; WORBES, 1995), 

phenological observations, cambial wounding, a correlation between ring widths and climate 

data, and radiocarbon dating (DE MIRANDA; HIGUCHI; TRUMBORE; LATORRACA et al., 

2018; STAHLE, 1999; WORBES, 1995). The procedures involved in conducting a 

dendrochronology study are presented in Figure 3. 

 

 

Figure 3: Schematic diagram of a dendrochronology study. The Chilimo Dry Afromontane 

Forest (1), J. procera trees (2), disc sample from J. procera tree (3), sanding process in the 

laboratory (4), growth ring boundaries in the cross-sectional area (5), growth ring boundary 

marking (6), LINTAB tree ring measuring equipment (7), and growth ring measurement (8). 
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 Dendrochronology and forest management 

Tropical forest management is constrained by the lack of reliable information about the 

growth of trees which is a basis for determining the commercial tree volumes and cutting cycles 

(INGA; DEL VALLE, 2017; ROSA; BARBOSA; JUNK; DA CUNHA et al., 2017). The 

growth pattern of trees or a group of trees is considered the basis for planning sustainable forest 

management (SCHÖNGART, 2008). This information can be obtained either from repeated 

measurements in permanent sample plots (PSPs) or from tree ring analysis (BRIENEN; 

ZUIDEMA, 2006; CONDIT; HUBBELL; FOSTER, 1993). According to BIONDI (1996) 

repeated forest inventories enables to quantify the growth of individual trees and provide a 

complete picture of growth dynamics. The information collected through this approach can help 

to determine the growth, recruitment, and mortality of trees. Nevertheless, conducting repeated 

forest inventories can be costly due to the labor-intensive nature of the process. These 

inventories require periodic measurements, usually at 5 to 10-year intervals, which can also be 

challenging to adjust to the annual growth rate of trees (CLARK; CLARK, 2001; INGA; DEL 

VALLE, 2017).  

Tree ring analysis is a fast and reliable tool to estimate the individual tree age, and 

determine the lifetime growth rates of trees, in turn improving the understanding of forest 

dynamics, and thus helping to develop adequate forest management systems (BIONDI, 1996; 

BRIENEN; ZUIDEMA, 2006; GROENENDIJK; BONGERS; ZUIDEMA, 2017; ROSA; 

BARBOSA; JUNK; DA CUNHA et al., 2017). This approach involves harvesting or coring 

trees to collect wood samples for data generation. The growth information generated by this 

approach will help to determine the long-term growth pattern of trees and develop growth 

models (BRIENEN; ZUIDEMA, 2006; CANETTI; DE MATTOS; BRAZ; NETTO, 2017; 

ROZENDAAL; BRIENEN; SOLIZ-GAMBOA; ZUIDEMA, 2010), to reconstruct competition 

and forest dynamics (CANETTI; DE MATTOS; BRAZ; RICKEN et al., 2016; DE MATTOS; 

AGUSTINI; ALVAREZ, 2010), to estimate the diameter growth, minimum logging diameters, 

and cutting cycle of trees (DE MIRANDA; HIGUCHI; TRUMBORE; LATORRACA et al., 

2018; MATTOS, 2008), to accurately determine the age and radial growth of trees (BRIENEN, 

2005; MARTı́NEZ-RAMOS; ALVAREZ-BUYLLA, 1998; METSARANTA, 2020), to assess 

biomass production and carbon sequestration (MBOW; CHHIN; SAMBOU; SKOLE, 2013; 

SANOGO; GEBREKIRSTOS; BAYALA; VILLAMOR et al., 2016) and many other 

applications. In general, tree ring analysis is the most effective alternative method for 

determining the lifetime growth rate of trees in a relatively short period of time. This approach 
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can aid in making informed decisions regarding forest management and gaining a better 

understanding of forests dynamics (e.g. COURALET; SASS-KLAASSEN; STERCK; 

BEKELE et al., 2005).  

 Dendrochronology and long-term research Plots in Ethiopia 

Dendrochronological research is feasible in only a few sub-Saharan African countries, 

and Ethiopia is among them (WILS; SASS-KLAASSEN; ESHETU; BRÄUNING et al., 2011). 

Several dendrochronological studies have been carried out using different tree species in 

Ethiopia (Table 1). From the dendrochronological investigations, four major types of growth 

ring patterns have been identified namely: anatomically not distinct rings, multiple rings per 

year, annual rings, and multiple missing rings (WILS; SASS-KLAASSEN; ESHETU; 

BRÄUNING et al., 2011). This complex tree ring formation in Ethiopia is associated with 

differences in precipitation patterns (such as unimodal versus multimodal) and relatively small-

scale variations in tree sensitivity to water availability. The lists of dendrochronological studies 

and the studied tree species are presented in Table 1. 

Table 1: Dendrochronological studies and the studied trees in Ethiopia 

No Trees Forest type References 

1 Acacia Seyal 

Acacia-Commiphora 

woodland 

Gebrekirstos et al., 2008 and 

2009 

2 Acacia tortilis 

3 Acacia senegal 

4 Balanites aegyptiaca 

5 Boswellia neglecta Mokria et al., 2017 

6 Acacia etbaica Eshete and Sta˚hl 1999 

7 Olea europaea 

Dry Afromontane Forest 

Siyum et al., 2019 

8 Juniperus procera Siyum et al., 2019 

Wills et al., 2011  

Sass-Klaassen et al., 2008  

Couralet et al., 2005 

9 Prunus africana Krepkowski et al., 2011 

10 Ekebergia capensis Braunning et al., 2014 

11 Celtis africana Krepkowski et al., 2011 

12 Croton macrostachyus Bräuning et al., 2014 

13 Podocarpus falcatus Krepkowski et al., 2011  
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Siyum et al., 2019 

14 Boswellia Papyrifera Combretum terminalia 

woodland 

Tolera et al., 2013 

15 Cupressus lusitanica 
Plantation forest 

Gebregeorgis et al., 2018 

16 Pinus patula Krepkowski et al., 2011 

 

Most of the dendrochronological studies in Ethiopia were mainly focused on the climate 

growth relationships (e.g. ESHETE; STÅHL, 1999; GEBREGEORGIS; ZEWDIE; WILS; 

ROBERTSON et al., 2018; GEBREKIRSTOS; MITLÖHNER; TEKETAY; WORBES, 2008; 

MOKRIA; GEBREKIRSTOS; ABIYU; VAN NOORDWIJK et al., 2017; SIYUM; AYOADE; 

ONILUDE; FEYISSA, 2019a), river flow reconstruction (MOKRIA; GEBREKIRSTOS; 

ABIYU; BRÄUNING, 2018), age and growth dynamics (ABIYU; MOKRIA; 

GEBREKIRSTOS; BRAEUNING, 2018; COURALET; SASS-KLAASSEN; STERCK; 

BEKELE et al., 2005; KREPKOWSKI; BRÄUNING; GEBREKIRSTOS; STROBL, 2011; 

MOKRIA; TOLERA; STERCK; GEBREKIRSTOS et al., 2017; SIYUM; AYOADE; 

ONILUDE; FEYISSA, 2019b; TOLERA; SASS-KLAASSEN; ESHETE; BONGERS et al., 

2013). The majority of the dendrochronological research has focused on selected trees from 

Acacia-Commiphora and Combretum-Terminalia woodlands, with only a limited number of 

studies from the Dry Afromontane forests, a predominant forest type in the highlands of 

Ethiopia. Specifically, none of the existing studies on the dry Afromontane forests have aimed 

to determine the minimum logging diameter, cutting cycle, and the productivity diameter class 

of commercially important timber tree species. The lack of such information could have 

implications for the sustainable management and utilization of trees from the Dry Afromontane 

Forest in Ethiopia. 

 

 

 

 

 

 

 

 

 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/forest-ecosystems
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1 Introduction 

Tree height is an important variable for modeling and understanding the vertical structure 

of the forest stand, stand development over time, and the estimation of biomass, timber volume, 

and site productivity (BURKHART; TOMÉ, 2012; CHAVE; RÉJOU‐MÉCHAIN; 

BÚRQUEZ; CHIDUMAYO et al., 2014; EFCCC, 2020; FELDPAUSCH; LLOYD; LEWIS; 

BRIENEN et al., 2012). However, measuring tree height is often fraught with errors 

(HUNTER; KELLER; VICTORIA; MORTON, 2013). Generally, measuring the height of 

standing trees is difficult in closed-canopy forests with tall and irregularly shaped crowns 

(HOLDAWAY; MCNEILL; MASON; CARSWELL, 2014; HUNTER; KELLER; 

VICTORIA; MORTON, 2013; LARJAVAARA; MULLER‐LANDAU, 2013). The observed 

difficulties can be effectively addressed through the development of height-diameter models 

(MEHTÄTALO; DE-MIGUEL; GREGOIRE, 2015). 

Earlier studies have described the differences in height-diameter relationships among 

species, stands, and geographic regions (BANIN; FELDPAUSCH; PHILLIPS; BAKER et al., 

2012; CALAMA; MONTERO, 2004; FELDPAUSCH; BANIN; PHILLIPS; BAKER et al., 

2011; IMANI; BOYEMBA; LEWIS; NABAHUNGU et al., 2017). In recent work, SILESHI; 

NATH e KUYAH (2023) provided evidence contradicting that notion and showed that most of 

the variability in the height-diameter relationship is a statistical artifact arising from 

measurement errors, small sample sizes, sampling biases and failure to capture the size-

frequency distribution. Therefore, it is crucial to consider these arguments while trying to 

understand the height-diameter relationship of trees. Moreover, the use of additional predictor 

variables such as basal area, stem density, dominant height, the relative position of trees, and 

quadratic mean diameter have been widely recognized to enhance the accuracy of height 

prediction under different site conditions (RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 

2021; TEMESGEN; V GADOW, 2004; TEMESGEN; ZHANG; ZHAO, 2014). These 

predictor variables will enable us to avoid the need to establish separate height-diameter 

relationships for each stand (CURTIS, 1967). 

The basic data used to develop height-diameter models are usually collected from trees 

in randomly established plots within a forest stand. The data derived from such plots are 

clustered (trees within plots) and are usually correlated (DORADO; DIÉGUEZ-ARANDA; 

ANTA; RODRÍGUEZ et al., 2006). When a model is fitted to correlated data using the ordinary 

least squares (OLS) method, the confidence intervals for the model parameters may be 

estimated incorrectly (ERCANLI, 2015). Recent studies (MEHTÄTALO; DE-MIGUEL; 
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GREGOIRE, 2015; OGANA; ERCANLI, 2022; RAPTIS; KAZANA; KAZAKLIS; 

STAMATIOU, 2021; TEMESGEN; ZHANG; ZHAO, 2014) have demonstrated that the 

mixed-effect modeling approach allows modeling the data collected from clustered structures 

and accounts for the lack of independence between observations. This approach can also help 

to incorporate tree height-diameter variability arising from differences in forest type, location, 

sample plots, and species that the OLS approach does not consider. Mixed effects models 

provide opportunities to simultaneously estimate both fixed effects and subject-specific 

(random-effects) parameters (PINHEIRO; BATES, 2000).  

Various local and generalized height prediction models have been proposed for different 

tree species in temperate (e.g., RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 2021; 

SHARMA; VACEK; VACEK; KUČERA, 2019) and tropical forests (KEARSLEY; 

MOONEN; HUFKENS; DOETTERL et al., 2017; LIMA; GÖRGENS; ELIAS; DE ABREU et 

al., 2021; MUGASHA; MAUYA; NJANA; KARLSSON et al., 2019). These models are 

designed to enable practitioners to estimate the height of trees and hence the biomass, timber 

volume, and site productivity of a forest without destructive sampling. On the other hand, very 

few efforts have been made to develop height prediction models for trees in Afromontane 

forests. A few models exist for some forests and trees in Ethiopia (ASRAT, ZERIHUN; EID, 

TRON; GOBAKKEN, TERJE; NEGASH, MESELE 2020; SEBRALA; ABICH; NEGASH; 

ASRAT et al., 2022; SISAY; THURNHER; BELAY; LINDNER et al., 2017). However, the 

existing models are not adequate for general use given the diversity of tree species and the 

geographic coverage of Ethiopia. Therefore, it is crucial to develop more height prediction 

models for the native tree species of Ethiopia. 

In this study, we developed models that could be used to predict the height of J. procera 

Hochst. ex Endl. trees in the dry Afromontane Forest in central Ethiopia. Height prediction 

models do not exist for J. procera, although it is one of the commercially important native 

species in Afromontane forests across Africa and the Arabian Peninsula. The objectives of this 

research were (1) to evaluate the prediction performance of different local height-diameter 

models and select the best model for J. procera trees in Chilimo dry Afromontane Forest; (2) 

to develop a mixed effect model and analyze the plot level prediction performance; (3) to 

evaluate the contribution of including stand variables on the prediction performance of the best 

model; and (4) to determine the best sampling alternative for calibrating the best mixed-effects 

and generalized mixed-effects model. 
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2 Materials and Methods 

2.1. Study area 

The data used in this study were collected from the Chilimo and Menagesha Suba Dry 

Afromontane Forests (Figure 1). The Chilimo forest is geographically located from 38°05' to 

38°15' E and 9°00' to 10°10' N, at an altitudinal range of 1,700-3,200 m (TESFAYE, MEHARI 

A; GARDI, OLIVER; BEKELE, TESFAYE; BLASER, JÜRGEN 2019). The area experiences 

a unimodal pattern of rainfall distribution occurring from May to November, with July having 

the highest peak. The mean annual temperature ranges between 15 and 20 °C, and its average 

annual precipitation ranges between 1000 and 1264 mm (TESFAYE, MEHARI A; GARDI, 

OLIVER; BEKELE, TESFAYE; BLASER, JÜRGEN 2019).  

 

Figure 1: Map of the study areas overlaid with the distribution map of dry Afromontane forests 

following Friis et al. (2010). 
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The major soil types around the study areas are Vertisols, Luvisols, and Cambisols 

(SOROMESSA; KELBESSA, 2013). The soils are reddish-brown, gravely and shallow at 

higher altitudes, while at lower sites, they tend to become dark-gray and deep (SOROMESSA; 

KELBESSA, 2013; TESFAYE; BRAVO; RUIZ-PEINADO; PANDO et al., 2016). According 

to MAMMO; KEBIN; CHIMIDI e IBRAHIM (2019), the surface soil (0-20 cm) in Chilimo 

forest has higher levels of total nitrogen, available phosphorus, and potassium, as well as a 

higher percentage of organic matter. Menagesha Suba forest is located between 38°28′ E and 

38°36′ E to 8°56′ N and 9°02′ N with an altitude ranging between 2200 and 3385 m (LEMI; 

ESHETE; SEID; MULUGETA et al., 2023). The area receives on average 1056 mm of rainfall 

per year, and the average monthly temperature ranges from 6 to 22 °C. The rainfall pattern is 

bimodal, with a long rainy season from June to September and a short rainy season between 

April and May (DUGUMA; HAGER; GRUBER, 2009). The data collected from the 

Menagesha suba Dry Afromontane Forest was used for calibration. 

2.2. Data collection 

We conducted a forest inventory in 2018 in the Chilimo and Menagesha Suba forests. 

We used a systematic random sampling technique for vegetation data collection. A total of 131 

sample plots (20 m × 20 m), 101 in Chilimo and 30 in Menagesha suba forest, were established 

along transect lines. The first transect was aligned parallel to the edge of the forest, and the 

others were laid out at 500 m intervals along the transect lines. The first sample plot was located 

randomly, and the subsequent plots were established at 300 m intervals. In each sample plot, 

the diameter at breast height (dbh) and total height (ht) of all trees with dbh ≥ 2.0 cm were 

measured using a diameter tape and Vertex IV ultrasonic hypsometer (Haglöf Sweden AB, 

Långsele, Sweden). The local names of all trees were recorded and identified to the species 

level in the field following the Flora of Ethiopia and Eritrea (EDWARDS; TADESSE; 

DEMISSEW; HEDBERG, 2000; EDWARDS; TADESSE; HEDBERG, 1995; HEDBERG; 

EDWARDS; NEMOMISSA, 2003; HEDBERG; FRIIS; EDWARDS, 2004; HEDBERG; 

HEDBERG; EDWARDS, 1989). Those species which were not identified in the field, their 

specimens were collected, pressed, and identified at the National Herbarium, Addis Ababa 

University. The collected data were used to compute the quadratic mean diameter (Dg), basal 

area (G), dominant height (hd) (the average height of the 100 tallest trees per hectare) and 

diameter (Dd) (the diameter for the average height of the 100 tallest trees per hectare), and the 

number of trees per hectare (N). The diameter and height of 1215 individual J. procera trees 
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were extracted from the inventory data and used to develop a height prediction model. 

Descriptions of the dataset are presented in Table 1. 

Table 1: The summary statistics of the fitting and calibration datasets. 

Variables 
Fitting dataset (No of plots = 101) Calibration dataset (No of plots = 30) 

Mean Min. Max. Std Mean Min. Max. Std 

Dbh 21.10 2.00 121.20 18.45 14.3 2.00 71.00 12.70 

ht 13.55 2.00 43.22 7.76 9.90 1.60 28.00 6.20 

G 11.27 0.01 87.60 15.89 2.00 0.01 16.90 4.40 

N 484.48 25.00 2750.00 773.37 606.80 21.00 1149.00 365.80 

hd 10.71 2.00 38.67 6.77 4.60 1.40 14.00 2.50 

Dd 18.47 2.53 71.70 13.12 9.10 2.00 25.90 6.50 

Dq 16.23 2.00 79.80 13.81 5.40 2.00 23.90 6.10 

where dbh = diameter at breast height (cm), ht = total height (m), N = stand density (trees ha-

1), G = basal area (m2 ha-1), Dq = quadratic mean diameter (cm), hd = dominant height (m), and 

Dd = dominant diameter (cm), Min = minimum, Max = maximum, and Std = standard deviation. 

2.3. Juniperus procera Hochst. ex. Endl. 

We chose J. procera, commonly known as the African Pencil Cedar, as the target 

species in this study because of its value as a native timber tree. It is an evergreen coniferous 

tree that grows up to a height of 40 m and a diameter of 3 m (POHJONEN; PUKKALA, 1992). 

This species was once regarded as threatened in the IUCN red list in 2011, but it has been 

assessed as a species of least concern (FARJON, 2013). Its native range covers Congo, 

Democratic Republic of Congo, Djibouti, Eritrea, Ethiopia, Kenya, Malawi, Saudi Arabia, 

Somalia, Sudan, Tanzania, Uganda, Yemen, Republic of and Zimbabwe (ORWA; MUTUA; 

KINDT; JAMNADASS et al., 2009). It is grown in plantations in its native range and 

elsewhere, including South Africa, France, the United Kingdom, the United States, India, and 

Australia (ORWA; MUTUA; KINDT; JAMNADASS et al., 2009). It is also a valuable timber 

tree species in the East African highlands and the most preferred tree in Ethiopia (ABRHA; 

BIRHANE; HAGOS; MANAYE, 2018). It is adapted to high elevation climates with low 

precipitation characteristic of Afromontane forests, which constitute a unique forest type 

occurring on high African mountains (WHITE, 1983).  
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2.4. Statistical analysis 

2.4.1. Base model selection 

The relationship between tree height and diameter has been described using a variety of 

statistical models. Various height-diameter models have been published to describe height-

diameter relationships (e.g., HUANG; TITUS; WIENS, 1992; MEHTÄTALO; DE-MIGUEL; 

GREGOIRE, 2015; ZEIDE, 1993). Some are grounded in sound theory, while others are purely 

empirical in nature. The power law function is the most common one based on a number of 

theoretical arguments (SILESHI; NATH; KUYAH, 2023). MEHTATALO e LAPPI (2020) 

suggested that flexibility and parsimony (i.e., combining simplicity with high predictive or 

explanatory power) should be considered in addition to the parameters' obvious biological 

interpretability when choosing the best function. We evaluated fourteen local functions (Table 

2) that have been widely used to describe the height-diameter relationships of trees from both 

plantation and natural forests (CHENGE, 2021; CORRAL-RIVAS; ÁLVAREZ-GONZÁLEZ; 

CRECENTE-CAMPO; CORRAL-RIVAS, 2014; KEARSLEY; MOONEN; HUFKENS; 

DOETTERL et al., 2017; OGANA; CORRAL-RIVAS; GORGOSO-VARELA, 2020; 

RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 2021). 

Table 2: Lists of candidate equations for height modeling. 

No Name Mathematical expression References 

M1 Power 
 

Stoffel and Van 
Soest (1967) 

M2 Näslund  Näslund (1937) 

M3 Curtis  Curtis (1967) 

M4 Meyer  Meyer (1940) 

M5 Schumacher  Schumacher (1939) 

M6 
Michaelis and 
Menten  

Bates and Watts 
1980 

M7 Gomperz Gomperz (1825) 



51 
 

 

M8 Logistic  Huang et al. (1992) 

M9 Chapman-Richards  

Richards (1959), 
Chapman (1961) 

M10 Weibull  Weibull (1951) 

M11 Lundqvist Korf  Zeide 1989 

M12 Ratkowsky  Ratkowsky (1990) 

M13 Hossfeld IV  Huang (2000) 

M14 
Johnson-
Schumacher 

 Zeide 1989 

where dbh is the over bark diameter at breast height in cm, ht is the total tree height in m, and 

β0, β1, and β2 are parameters of the height-diameter models. 

 

We fitted all models by using the gnls function in R software version 3.3.2. (R 

Development Core Team 2021). We used bias, root mean square of error (RMSE), and Akaike 

information criterion (AIC) (equations 1, 2, and 3) and graphical analysis to compare the 

predictive performance of the models and select the best fitted model (TEMESGEN; ZHANG; 

ZHAO, 2014). We also applied a power type variance function (var(e) = σ2 |dbh|2δ) to correct 

the observed heteroscedasticity in the residuals of all models. 𝐵𝑖𝑎𝑠 = ∑ (𝑌𝑖− 𝑌̂𝑖)𝑛𝑖=1 𝑛                                                                                                                 (1) 

𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖−𝑦𝑖̀)2𝑛𝑖=1𝑛−𝑝                                                                                                            (2) 𝐴𝐼𝐶 = 𝑛 𝑙𝑜𝑔 (𝑆𝑆𝑅𝑛 ) + 2𝑝                                                                                                        (3) 
 

where 𝑦𝑖 = observed values, 𝑦𝑖= predicted values, 𝑦̂𝑖 = average, n = total number of 

observations, p = number of parameters of the equation, SSR = sum of the squares of the 

residuals; RMSE = root mean square of error; and AIC = Akaike information criterion. 

A rank was assigned to the fit statistical values of each model (MULAMBA; MOCK, 

1978).  These ranks were then aggregated by adding them together to calculate the final fit rank 

for each model. This rank serves as an indicator of the model’s performance with respect to all 
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the considered fit statistics criteria. Furthermore, the models' compliance with the constant 

variance assumption was also examined by plotting the residuals against the standardized 

diameter. The function mywhiskers in the package lmfor was utilized to plot the means of 

residuals in 10 relative diameters classes together with the confidence interval for individual 

observation (mean ± 1.96 SD) and the 95% confidence intervals for the class mean to visually 

detect the potential heteroscedasticity in the residuals (MEHTÄTALO; DE-MIGUEL; 

GREGOIRE, 2015; RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 2021). The difference 

between each tree's diameter and the plot mean diameter divided by the diameter's standard 

deviation was used to calculate standardized diameters (MEHTÄTALO; DE-MIGUEL; 

GREGOIRE, 2015). The parameters of the best-fitted model were obtained by fitting the model 

with the entire dataset. Finally, the model with the lowest rank sum value and exhibited no 

violation of the assumption of homoscedasticity was regarded as the best base model. 

2.4.2. Nonlinear mixed-effects modeling 

Once the best generalized nonlinear least squares model was selected, we proceeded to 

expand the parameters with random effects. Here, we used a subject-specific nonlinear mixed 

effects model (NLMEM). The reason for this choice is that the data used in this study consisted 

of a hierarchical structure, i.e., trees within sample plots. Several works have shown that 

observations taken from the same sampling unit are highly correlated (e.g., CALAMA; 

MONTERO, 2004; ERCANLI, 2015; ÖZÇELIK; CAO; TRINCADO; GÖÇER, 2018) and 

show a clear violation of the fundamental least squares assumption of independent observation. 

This will lead to bias in the confidence intervals for the mean value of the parameters. To 

address this problem, earlier studies have proposed the use of nonlinear mixed-effects models 

(CALAMA; MONTERO, 2004; MEHTÄTALO; DE-MIGUEL; GREGOIRE, 2015; RAPTIS; 

KAZANA; KAZAKLIS; STAMATIOU, 2021; TEMESGEN; ZHANG; ZHAO, 2014). The 

random-effects parameters describe a particular cluster (sample plot), while the fixed-effects 

parameters reflect the population average of the data (STEGMANN; JACOBUCCI; 

HARRING; GRIMM, 2018). More recently, NLMEM has been widely applied in modeling 

height-diameter relationships (CHENGE, 2021; CICEU; GARCIA-DURO; SECELEANU; 

BADEA, 2020; CUI; WU; ZHANG; ZHAO et al., 2022; OGANA, 2022; XIE; WIDAGDO; 

DONG; LI, 2020; ZHANG; FU; SHARMA; HE et al., 2021). The parameters were estimated 

by using the ‘nlme’ function (PINHEIRO; BATES, 2022) in R software version 3.3.2. (R Core 

Team 2021). This allows for a comparison between the different mixed effects model forms 

(Table 3) and the selected base model by ANOVA to test the significance of including the 
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random effects, as both models have the same fixed effects. Model evaluation was again 

performed using RMSE, bias, and AIC values. 

Table 3: The evaluated nonlinear mixed-effects models form 

No Model form Random effects 

M1  

on β0 and β1 

M2  

on β0 

M3  

on β1 

where ht is the height of tree, dbh is the diameter at breast height, β0 and β1 are the fixed effects 

parameters, and ui denotes the estimated random effects. 

2.4.3. Generalized mixed effects models. 

The contribution of the easily measured stand variables (Table 1) to improve the 

predictive performance of the best mixed effect model was evaluated. First, we conducted 

correlation analysis to evaluate the relationship of the stand variables with the parameters of 

the best mixed-effects model. During the analysis, different combinations of the selected stand 

variables were entered as predictors in the model, and the fitting performances were evaluated 

using the RMSE, bias, and AIC. Then, a generalized mixed-effects model was developed using 

the most highly correlated stand predictor variables. 

2.4.4. Calibration and random effect estimation. 

Two different types of predictions can be made using the mixed effects modeling 

approach (MEHTÄTALO; DE-MIGUEL; GREGOIRE, 2015; PATRÍCIO; DIAS; NUNES, 

2022). The first is a fixed effects or marginal prediction that offers predictions using only the 

fixed part of the model. The second is conditional prediction, which provides a more accurate 

prediction for a given sample plot because it uses both the random and fixed elements of the 

model. However, when height measurements are available from subsampled trees from a new 

plot or stands, it is possible to localize the random effects; this process is known as calibration 

or localization. In this study, we used calibration to determine the plot-specific random effects 

and evaluate the model’s performance (MEHTÄTALO; DE-MIGUEL; GREGOIRE, 2015; 

PATRÍCIO; DIAS; NUNES, 2022; RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 2021). 

Based on the subsample data, the random effects 𝑏𝑖̂ were usually predicted by using the 

following equation (VONESH; CHINCHILLI, 1997). 
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𝒃̂ = 𝑫̂𝒁̂𝑖𝑇(𝑹̂𝑖 + 𝒁̂𝑖𝑫̂𝒁̂𝑖𝑇)−1𝒆̂𝑖 
where 𝐷̂ is the estimated variance-covariance matrix associated with the random effects 

at the plot level, 𝑅𝑖̂ is the estimated variance-covariance matrix for the error term, 𝑍𝑖̂ is the 

partial derivatives matrix with respect to the random effects, and 𝑒̂𝑖 is the error matrix estimated 

using the fixed parameters only. The detailed procedure for random effects prediction using 

nonlinear mixed effects modeling is presented by CALAMA e MONTERO (2004). The 

calibration response of the best mixed effect and generalized mixed effects models was assessed 

for various sampling alternatives and sample sizes in each plot using an independent dataset 

(Table 1). Overall, nine different sampling alternatives (Table 4) were evaluated to determine 

the required number of trees for the calibration process following the procedure in CAMACHO; 

RIVAS; HERNÁNDEZ; DURÁN et al. (2022): 

Table 4: The evaluated sampling alternatives for calibration response 

Code Sampling alternatives 

A1. Using selected trees with diameters near the diameter distribution quartiles (0.25, 

0.50, and 0.75 percentiles). 

A2. Using selected trees with diameters close to the first and the second quartiles (0.25 

and 0.50) of the diameter distribution. 

A3. Using selected trees with diameters close to the first and the third quartiles (0.25 and 

0.75) of the diameter distribution. 

A4. Using selected trees with diameters close to the first and the third quartiles (0.50 and 

0.75) of the diameter distribution. 

A5. Using selected trees with diameters close to the second quartiles (0.50) of the diameter 

distribution. 

A6. Using selected trees with diameters close to the Dq, the minimum (smallest diameter), 

and the maximum (largest diameter) trees in each plot. 

A7. Using the thinnest tree in each sample plot 

A8. Using 1 - 10 randomly selected trees in each sample plot 

A9. Using 1 - 10 systematically selected thickest trees in each sample plot 

We assessed the performance of the calibration alternatives using the RMSE values and 

compared them to the RMSE estimates generated using the best mixed-effects model when all 

trees in the sample plot were considered to estimate the random effects.   
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3. Results 

3.1. Base model selection 

The evaluated models demonstrated variations in their ability to predict tree height 

(Table 5). The parameter estimates of the evaluated models were significantly different from 

zero at a 5% significance level. Based on the Mulamba-Mock rank index values and an analysis 

of the residual graphs, the Chapman-Richards and Weibull model was found to be the best 

among the three-parameter models, while the Michaelis‒Menten model ranked first among the 

two-parameter models, showing the lowest goodness-of-fit statistics values. In terms of 

prediction accuracy, the two-parameter Michaelis-Menten model outperformed the three-

parameter Chapman-Richards and Weibull models. Therefore, we have selected the Michaelis-

Menten model as a base model for further analysis due to its simplicity (parsimonious) and ease 

of fitting (adequate fit). Details of the model diagnostics for the evaluated local models are 

provided in appendices (supplementary 2 - 4). 

Table 5: Parameter estimates and fit statistics values for the local models. 

Models 
Parameters Fit statistics Rank 

β0 β1 β2 Bias Rank RMSE Rank AIC Rank ∑ Final 

M1 1.802* 0.659*   0.00 1 4.39 12 6398.13 11 24 8 

M2 1.346* 0.195*   0.35 12 4.32 11 6389.49 9 32 11 

M3 20.891* 8.041*   0.85 13 4.77 13 6531.36 13 39 13 

M4 24.905* 0.043*   0.10 7 4.17 5 6322.19 6 18 6 

M5 19.99* 7.102*   0.97 14 4.91 14 6586.78 14 42 14 

M6 36.437* 32.113*   0.09 6 4.16 1 6314.99 2 9 1 

M7 22.083* 2.415* 0.089* 0.16 10 4.24 9 6396.07 10 29 10 

M8 21.152* 6.891* 0.141* 0.23 11 4.31 10 6462.61 12 33 12 

M9 26.816* 0.034* 0.914* 0.08 3 4.16 2 6318.97 5 10 3 

M10 27.406* 0.044* 0.929* 0.08 3 4.16 3 6318.42 4 10 4 

M11 98.175* 4.849* -0.302* 0.08 5 4.18 8 6310.83 1 14 5 

M12 31.394* 20.392* 5.819* 0.12 9 4.18 7 6335.11 8 24 9 

M13 36.768* 0.031* -0.995* 0.08 2 4.17 4 6316.97 3 9 2 

M14 33.337* 20.893* 7.296* 0.11 8 4.17 6 6329.15 7 21 7 

Note: * indicates significant parameter estimates at α = 0.05.  

Figure 2a and 2b illustrate the graphical representation of the model fitting and the 

observed versus predicted height performance, respectively. The observed and predicted graphs 
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showed that the model generated accurate height prediction. The visual inspection of the 

standardized residuals graph shows no indication of violation of the assumption of 

homoscedasticity in the residual’s distribution (Figure 2c). The residuals are homogenously 

distributed around the zero line and there is no systematic pattern in the residual’s distribution. 

 

 

Figure 2: Diameter and height relationships (a), observed against predicted height (b), and 

residuals graph (c) of J. procera trees using the Michaelis‒Menten model. The grey dots show 

the residuals, the empty circles show the means of residuals in 10 relative diameter classes. The 

thin vertical lines show the confidence interval of one observation, and the thick vertical lines 

show the 95% confidence interval of class mean. The thick lines that do not cross the horizontal 

line at y = 0 are highlighted using red color. 
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3.2. Nonlinear mixed effects model 

The height prediction performance of the base model was significantly improved by 

adding a plot-level random effect (Table 6). Model comparison using the likelihood ratio (LR) 

test indicated that the mixed-effects model form with random effects on β0 and β1 (M1) had 

better height prediction performances (L = -3114.98, df = 6, p < 0.0001) than the remaining 

mixed-effect model forms. Overall, the RMSE decreased from 4.16 in the base model without 

random effects to 2.69 m in the best mixed effect model (M1), and the bias decreased from 0.09 

to 0.04 m. Additionally, the AIC of the model decreased from 6314.99 to 5858.75 (Tables 5 

and 6). 

Table 6: Parameter estimates, standard error (in parentheses), variance components, and fit 

statistics values for the mixed effects height-diameter models. 

Components 
Mixed models 

M1 M2 M3 
Fixed parameters       

β0 31.6506 (1.4959) 32.3400 (1.0469) 34.6591 (0.9960) 

β1 23.8515 (1.6557) 25.0679 (1.2465) 28.8907 (1.6301) 

Random variance components 
   

std (𝑢0𝑖) 12.1889 5.4512 
 

std (𝑢1𝑖) 11.9283 
 

7.7571 

cor (𝑢0𝑖, 𝑢1𝑖) 0.9380   

σ2  0.8463 0.9313 0.8122 

δ 0.4145 0.4018 0.4704 

Model performance 
   

RMSE (m) 2.6924 2.9144 3.2499 

Bias (m) 0.0432 0.0112 -0.0566 

AIC 5858.75 6051.30 6316.07 

where β0 and β1 are fixed parameters; std (𝑢0𝑖) and std (𝑢1𝑖) are the standard deviation of the 

random effects; cor is the correlation between the random effects; σ2: residual variance; δ: 

parameter of power-type variance; RMSE, bias, and AIC values are the fit statistics values from 

the models. 

The plot-level predictions closely follow the observed values, indicating that the best 

mixed-effects model (M1) explains the height-diameter relationship of J. procera trees very 



58 
 

 

well (Figure 3a). The observed and predicted graphs showed that the model generated accurate 

height prediction (Figure 3b). The visual inspection of the standardized residuals plot of the 

best-fitted mixed effect model (M1) shows no indication of violation of the assumption of 

heteroscedasticity in the residual’s distribution (Figure 3c). Residuals are homogenously 

distributed around the zero line and there is no systematic pattern in the residual’s distribution. 

Figure 3: Plot specific height diameter curves (a), observed against predicted height (b) and 

residuals distribution graphs (c) of J. procera trees using the mixed effect model. The lines 

represent the local curves, and the gray dots are the observed height-diameter data. 

3.3. Generalized mixed effects model. 

Among the stand variables, stem density (r = -0.38, p < 0.01) and quadratic mean 

diameter (r = 0.26, p < 0.04) were found to be correlated with the β0 and β1 parameters of the 

best mixed effects model (Supplementary 1). The addition of these variables into the best mixed 
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effects model slightly improved the RMSE by 0.01%. However, the AIC and the model bias 

was increased by 68% and 0.03%, respectively (Tables 6 and 7). The final generalized mixed 

effects model resulting from expanding the fixed effects of the best mixed effects model was: ℎ𝑡𝑖𝑗 = 1.3 + ((𝛽0+𝑢0𝑖) ∗ 𝑑𝑏ℎ𝑖 +  𝛽2  × 𝐷𝑔 )/((𝛽1 + 𝑢1𝑖) + 𝑑𝑏ℎ𝑖 + 𝛽3 ∗ 𝑡𝑝𝑎) … M11 

Table 7. Parameter estimates, standard error (in parentheses), and fit statistics of the best 

generalized mixed effects model. 

Components M11 

Fixed parameters  

β0 28.4695 (1.3859) 

β1 13.4697 (2.1315) 

β2 -1.3338 (0.1496) 

β3 0.1139 (0.0383) 

Random variance components 
 

std (𝑢0𝑖) 11.3006 

std (𝑢1𝑖) 11.1352 

cor (𝑢0𝑖, 𝑢1𝑖) 0.9510 

σ2  0.8019 

δ 0.4327 

Model performance 
 

RMSE (m) 2.6921 

Bias (m) 0.0724 

AIC 5860.53 

where β0, β1, β2, and β3 are fixed parameters; std (𝑢0𝑖) and std (𝑢1𝑖) are the standard deviation 

of the random effects, cor is the correlation between the random effects, σ2 is the residual 

variance, δ is the parameter of power-type variance, RMSE, bias, and AIC are the fit statistics 

values. 

The visual inspection of the standardized residuals graph of the generalized mixed effect 

model (M11) shows no indication of violation of the assumption of heteroscedasticity in the 

residual’s distribution (Figure 4). The residuals are homogenously distributed around the zero 

line and there is no systematic pattern in the residual’s distribution. 
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Figure 4. Standardized residuals graph for the generalized mixed-effects model (M11) 

3.4. Calibration response 

Among the systematic sample selection alternatives (A1-A9), the lowest RMSE value 

was obtained by measuring trees with diameters close to the quadratic mean diameter, the 

smallest, and the largest diameter trees (A6) in each plot using the mixed effects model (Table 

8). Conversely, the thinnest tree (smallest diameter) sampling alternative (A7) consistently 

produced the highest RMSE values for both models. The systematic selection alternative (A9) 

consistently outperformed the random selection alternative (A8) when using the local mixed 

effect model (Figure 5). However, the opposite was observed for the generalized mixed effect 

model. Overall, the best result for random effect estimation was obtained by systematically 

measuring three trees with the largest diameters in each plot. 

Table 8: The RMSE values for the evaluated sampling alternatives. 

No Subsample N 
Model RMSE 

Local  Generalized 
A0 The best local model 1215 2.6924  2.6921 

A1 Quartiles [1,2,3] 3 2.2320  2.4311 

A2 Quartiles [1,2] 2 2.5344 
 

2.9109 

A3 Quartiles [1,3] 2 2.2873 
 

2.5345 

A4 Quartiles [2,3] 2 2.3376 
 

2.6929 

A5 Quartiles [2] 1 2.6680 
 

3.1421 

A6 dg, dmin, dmax 3 2.1354  2.4517 

A7 Thinnest 1 2.9954  3.2069 
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Figure 5: Plots of RMSE values obtained in the calibration process for the systematic and 

random sampling alternatives A8 and A9. The blue dashed line represents systematic selection 

using the generalized mixed effect model, while the red dashed line represents random selection 

using the same model. On the other hand, the broken red line denotes random selection using 

the local mixed effect model, while the broken blue lines denote the systematic selection 

alternative using the local mixed effect model. 

4. Discussion 

In this study, we developed a height prediction model for J. procera trees from the dry 

Afromontane forests of Ethiopia. Among the evaluated local models, the Michaelis‒Menten 

model showed the best height prediction performance and was selected as the best base model. 

The addition of stand variables slightly improved the prediction performance of the best model. 

The plot level random effects enable us to capture the variability in height-diameter 

relationships among the plots and provide the best height prediction. The calibration response 

revealed that the systematic measurement of the three largest diameter trees in a plot was the 

best sample size to estimate the random effects and predict the height of trees from the new 

plots or stands. The findings of this study will help researchers and forest managers better 

understand the height growth pattern of J. procera trees in Afromontane forests and how stand 

variables affect height growth. 

The Michaelis‒Menten model was first developed to model enzyme kinetics in 

chemistry (MICHAELIS; MENTEN, 1913); however, it has been widely used for modeling the 
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height-diameter relationship of various tree species (e.g., BARBOSA; RAMIREZ-NARVAEZ; 

FEARNSIDE; VILLACORTA et al., 2019; FAYOLLE; PANZOU; DROUET; SWAINE et al., 

2016; MOLTO; HÉRAULT; BOREUX; DAULLET et al., 2014; PANZOU; BOCKO; 

MAVOUNGOU; LOUMETO, 2021). This model has two biologically meaningful parameters 

that represent the maximum asymptotic height (β0) a tree can attain and the curvature (β1) that 

describes the rate of increase in height (MOLTO; HÉRAULT; BOREUX; DAULLET et al., 

2014). It is an asymptotic model that has been used to estimate the missing height of trees during 

the recent national forest inventory in Ethiopia (SEBRALA; ABICH; NEGASH; ASRAT et al., 

2022). Various studies have also reported that two-parameter models are generally easier to fit 

and are quicker to achieve convergence than the three-parameter models (MEHTÄTALO; DE-

MIGUEL; GREGOIRE, 2015; OGANA; CORRAL-RIVAS; GORGOSO-VARELA, 2020), 

which is also supported by this study. 

The use of nonlinear mixed effects models in height-diameter modeling allows for the 

incorporation of random effects, which can account for both within and between-plot variability 

(e.g., BRONISZ; MEHTÄTALO, 2020; RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 

2021). The plot-specific height-diameter relationships (Figure 3c) showed varying degrees of 

variability in the asymptote and curvature and revealed a pattern of rapid development followed 

by a leveling off. Generally, the nonlinear mixed effects model (M1) provided better fit statistics 

values than the base model (Tables 5 and 6). As expected, the incorporation of random 

parameters of the mixed effect model allowed us to properly capture the variability in the 

height-diameter relationship both among and within the sample plots. This variability was not  

adequately accounted for by the base model (MEHTÄTALO; DE-MIGUEL; GREGOIRE, 

2015). HUANG; WIENS; YANG; MENG et al. (2009) similarly pointed out that the random 

component of the mixed effect model enables us to account for the plot level variations arising 

from both known and unknown factors without the necessity of explicitly identifying or 

measuring them. This is one of the key strengths of the Non-Linear Mixed Effects Modeling 

(NLMEM) approach. 

The mixed effect model result showed that the u0 parameter deviates from the 

population mean with a standard deviation of 12.2, indicating the variation in β0 among the 

sample plots. Similarly, the parameter u1 also differed from the population fixed effects on β1 

with a standard deviation of 11.9 m, indicating the variation in β1 among the sample plots (Table 

6). This result confirmed our expectations that the maximum height and curvature varied among 

the sample plots. The observed variation might be associated with variations in soil properties, 

stand structure, altitude, and stem density. Various studies have demonstrated that differences 
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in site quality, stem density, elevation, the relative position of trees within a stand, precipitation, 

and temperature are the main drivers of the variations in height-diameter relationships of 

various trees (BANIN; FELDPAUSCH; PHILLIPS; BAKER et al., 2012; FELDPAUSCH; 

BANIN; PHILLIPS; BAKER et al., 2011; MARSHALL; WILLCOCK; PLATTS; LOVETT et 

al., 2012; SHARMA; YIN ZHANG, 2004; SULLIVAN; LEWIS; HUBAU; QIE et al., 2018; 

TEMESGEN; HANN; MONLEON, 2007; TIAN; JIANG; SHAHZAD; HE et al., 2022). For 

example, trees that grew in soils with fewer physical limitations grew taller than trees subjected 

to greater physical limitations (FELDPAUSCH; BANIN; PHILLIPS; BAKER et al., 2011). 

Moreover, VAN BREUGEL; HALL; CRAVEN; GREGOIRE et al. (2011) also stated that soil 

fertility and rainfall had significant impacts on the early growth and survival of 49 tropical tree 

species in Panama. Specifically, the study revealed that trees in areas with higher soil fertility 

and rainfall were significantly taller and had larger diameters than trees in areas with lower 

fertility. This suggests that soil fertility plays an important role in determining the size of trees 

in each area. The differences in topography can be a potential cause of the variation in the 

height-diameter relationship, resulting in taller trees in the valleys compared to ridges in drier 

areas and vice versa in wet regions (DETTO; MULLER-LANDAU; MASCARO; ASNER, 

2013). In densely populated stands, trees may have to compete more for resources such as water, 

nutrients, and light, which can hinder their growth and result in significant height variability 

(GOMEZ-GARCIA; FONSECA; CRECENTE-CAMPO; ALMEIDA et al., 2015). In general, 

forests with several terrain attributes (i.e., soil types, topography, light conditions, and 

competition for resources) are likely to have greater variation in tree heights among coexisting 

individual tree species. 

The use of additional predictor variables in height-diameter models is not uncommon, 

and it is often used to improve height prediction accuracy (e.g., BRONISZ; MEHTÄTALO, 

2020; CAMACHO; RIVAS; HERNÁNDEZ; DURÁN et al., 2022; OGANA, 2022; RAPTIS; 

KAZANA; KAZAKLIS; STAMATIOU, 2021). This shows that the variability in the height-

diameter relationships of trees can be explained by the additional stand variables and diameter. 

In this study, we found that the inclusion of quadratic mean diameter and stem density slightly 

improved the RMSE by 0.01% (Table 6). These results suggest that they may not be the most 

important factors in determining tree heights. Similar findings were reported by CICEU; 

GARCIA-DURO; SECELEANU e BADEA (2020), who reported that the addition of stem 

density had little effect on the height prediction performance in their study. Tree height is 

primarily determined by individual tree genetics and environmental factors such as light 

availability and soil fertility, which might not be adequately captured by the evaluated stand 
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variables. For example, NEOPHYTOU; WEISSER; LANDWEHR; ŠEHO et al. (2016) 

examined how genetic variation relates to height growth in Douglas fir trees in various 

geographic regions. Their findings indicate a significant relationship between genetic variation 

and height growth in these trees. 

The main purpose of calibration is to estimate the random effects for a new plot and 

improve height prediction (CICEU; GARCIA-DURO; SECELEANU; BADEA, 2020; 

RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 2021). This requires a prior measurement 

of height, predictor variables, and the estimation of random effects from a new plot. In the 

calibration process, the local mixed effect model appeared to be more flexible and appropriate 

for height prediction than the generalized version, which is similar to previous findings 

(CASTAÑO-SANTAMARÍA; CRECENTE-CAMPO; FERNÁNDEZ-MARTÍNEZ; 

BARRIO-ANTA et al., 2013; RAPTIS; KAZANA; KAZAKLIS; STAMATIOU, 2021). This 

is evidenced by the fact that the RMSE values are consistently higher for the generalized mixed 

effects model than for the local mixed effects model (Figure 5). Furthermore, the simple model 

structure (i.e., without stand variables) of the calibrated mixed effect model makes it a 

preferable alternative for height prediction than the generalized mixed effect model 

(TRINCADO; VANDERSCHAAF; BURKHART, 2007). 

In this study, different sampling alternatives were identified for use in estimating the 

random effects from the new plot and improving height prediction. Generally, the systematic 

selection of the three largest diameter trees from each plot (A9) was found to be the best option 

to estimate the random effect and predict the height of trees from a new plot or stand. This is 

mainly related to the fact that the height of the largest trees represents the dominant height for 

the plot and could be used as an additional stand variable for the model representing the site 

index, thereby offering additional information for estimating the random effect. This is 

consistent with the findings of CALAMA e MONTERO (2004), who stated that measuring the 

height of four trees with larger diameters in each plot was the best sampling alternative for 

calibration. The results from other studies also showed that using randomly selected trees 

closest to the second quartiles of the diameter distribution provided the best calibration result 

(CORRAL-RIVAS; ÁLVAREZ-GONZÁLEZ; CRECENTE-CAMPO; CORRAL-RIVAS, 

2014). Similarly, OGANA; HOLMSTRÖM; SHARMA; LANGVALL et al. (2023) found that 

using measurements from the most extreme four trees was the best calibration alternative for 

several dominant tree species by taking into account various growth conditions, silvicultural 

practices and environmental factors in Sweden. 
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The choice of the sampling alternative depends on the available data for calibration and 

practical application of the model. If the required calibration data are available, then the 

calibrated local mixed-effects model using the three largest diameter tree alternatives (A9), or 

the second-best sampling alternative (A6) could be used. However, if the calibration data are 

not available, the generalized mixed effect model (M11) could be the best option because 

additional stand variables are included in the model. The additional stand variables will enable 

us to capture the natural variability among the sample plots. Moreover, if the calibration data 

and/or the stand variables are not available, the base model (with no random parameters) or 

mixed-effects model (random parameters = 0) could be used for tree height prediction 

(PATRÍCIO; DIAS; NUNES, 2022). Overall, the three largest diameter tree measurement 

alternative (A9) is advantageous since it requires less sampling effort in terms of cost and time 

for data collection (DORADO; DIÉGUEZ-ARANDA; ANTA; RODRÍGUEZ et al., 2006). The 

use of the model along with the proposed sampling alternatives will ensure high accuracy in 

height prediction while minimizing the time and cost associated with field work. 

5. Conclusions 

The Michaelis‒Menten model provided the best height prediction of the height-diameter 

relationship of the J. procera tree among the evaluated local models. The addition of quadratic 

mean diameter and stem density has little contribution to improving the height prediction 

performance. However, the best mixed effects model captures the between-plot variation in the 

height-diameter relationship and provides plot-level height prediction. The fixed effect of the 

mixed effects model can be used for the prediction of the mean height of J. procera trees for a 

given diameter in the Chilimo forest. The calibration response revealed that the measurement 

of the three largest diameter trees was the best sampling alternative to estimate the random 

effects and predict the height of trees for the new plots or stands. Generally, the calibrated 

height-diameter model developed in this study will help researchers and forestry practitioners 

reduce costs associated with height data collection as well as make better decision-making in 

stand volume and biomass estimation from different Afromontane forests in Ethiopia and 

elsewhere. 
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Supplementary 2: Height-diameter relationships using different nonlinear regression models 
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Supplementary 3: Standardized residuals graph of the nonlinear regression models 
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Supplementary 4: Observed and predicted height by non-linear regression models  
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1 Introduction 

Afromontane forests constitute a unique forest type occurring on high African mountains 

(WHITE, 1983). They are found in Ethiopia, Cameroon, and in South Africa (GADOW; 

ZHANG; DURRHEIM; DREW et al., 2016; GRIMSHAW, 2001; WHITE, 1983). Although 

they are widely separated, Afromontane forests share a similar mix of plant species (over 4000 

species, of which ~ 3000 are endemic), which are often distinct from the surrounding lowland 

forests (WHITE, 1983). Dry Afromontane forests are among the major natural forest types 

widely dispersed in the central, southeastern, eastern, northern, and southern highlands of 

Ethiopia (FRIIS; DEMISSEW; BREUGEL, 2010; UN-REDD, 2017). This forest type has 

ecological significance, being the remnant forest in different parts of the country; it provides 

habitat for many endangered species and stores a large amount of carbon (GEBEYEHU; 

SOROMESSA; BEKELE; TEKETAY, 2019a; GIRMA; SOROMESSA; BEKELE, 2014; UN-

REDD, 2017). The forest also supports the livelihoods of many people by providing diverse 

forest products (ASFAW; LEMENIH; KASSA; EWNETU, 2013; GOBEZE; BEKELE; 

LEMENIH; KASSA, 2009; SHIFERAW; LIMENIH; GOLE, 2019). However, the potentials 

of these forests have been impaired by severe anthropogenic disturbances, and have been 

heavily deforested and degraded due to their location in areas suitable for settlement and 

agriculture (LEMENIH; BONGERS, 2011). Hence, they require management intervention, 

which could help to maintain their biodiversity, productivity, and sustainability (TEKETAY; 

LEMENIH; BEKELE; YEMSHAW et al., 2010). 

Sustainable forest management requires an accurate estimation of the important 

characteristics of the forest resources, i.e., stem density, basal area, the standing volume of 

wood, and biomass stock (ADEKUNLE; NAIR; SRIVASTAVA; SINGH, 2013; BETTINGER; 

BOSTON; SIRY; GREBNER, 2016). This information is fundamental for assessing the 

productivity of a forest stand and guiding forest management decisions (ADEKUNLE; NAIR; 

SRIVASTAVA; SINGH, 2013; AKINDELE; LEMAY, 2006; HUSCH; BEERS; KERSHAW 

JR, 2003 ). Quantifying the biomass stock of forests is important for commercial uses (e.g., 

timber, fuelwood, and fiber), for scientific studies of ecosystem productivity, energy, and 

nutrient flows, and for assessing the contribution of forests to the carbon cycle and climate 

change mitigation. In line with this, PARRESOL (2001) stated that the biomass and volume of 

a tree should normally be estimated through regression analysis. This author stated that selected 

trees would be destructively sampled and measurements of the diameter at many points along 
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the stem (for volume model) and weights of the components of each tree (for biomass model) 

would be made and related by regression to one or more traits of the standing trees.  

Stem volume and biomass assessment have global interest, especially in the context of 

the Kyoto Protocol rules and climate change agreements (LINDNER; KARJALAINEN, 2007). 

Hence, developing countries involved with REDD+ (reducing emissions from deforestation and 

forest degradation) need to have a robust Measurement, Reporting, and Verification (MRV) 

system. Volume and biomass estimation models are a key element of the MRV system and 

enable us to properly assess the national wood, biomass, and carbon stocks. Despite this fact, 

information is scarce on stem wood volume and biomass in Afromontane forests in both 

Ethiopia and Africa in general; this is mainly due to the lack of locally developed biomass and 

volume estimation models.  

Developing a site-specific biomass model is a key element in the accurate estimation of 

forest biomass, carbon stock, and fluxes (WILLIAMS; RYAN; REES; SAMBANE et al., 

2008). Such information is gaining both economic and political currency in renewable energy 

development, carbon credit markets, and REDD + projects (NATH; TIWARI; SILESHI; 

SAHOO et al., 2019). Very few volume models (BERHE; ASSEFA; TEKLAY, 2013; 

GERESLASSIE; WORKINEH; TAKELE; ADEM et al., 2019; POHJONEN, 1991; 

TAKENAKA; ABEBE; TABUCHI, 2020; TESHOME, 2005; TSEGA; GUADIE; TEFFERA; 

BELAYNEH et al., 2019) and biomass models (ABICH; MUCHEYE; TEBIKEW; 

GEBREMARIAM et al., 2019; DABA; SOROMESSA, 2019; FEYISA; BEYENE; 

MEGERSA; SAID et al., 2018; MOKRIA; MEKURIA; GEBREKIRSTOS; AYNEKULU et 

al., 2018; SOLOMON; BIRHANE; TADESSE; TREYDTE et al., 2017; TESFAYE; BRAVO-

OVIEDO; BRAVO; RUIZ-PEINADO, 2016; TETEMKE; BIRHANE; RANNESTAD; EID, 

2019) are available in Ethiopia. These models are developed either for single tree species or 

mixed species by using a very small number of trees and/or the sampling does not include the 

larger diameter size trees in the forest. Hence, precise estimates of the standing volume of wood 

and biomass stock are lacking in Ethiopia's various forests.  

The limited availability of models in Ethiopia has led to the use of pan-tropical models, 

principally CHAVE; RÉJOU‐MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al. (2014) and the 

general volume equation (v = d × h × f) where f = 0.5 (e.g., SISAY; THURNHER; BELAY; 

LINDNER et al., 2017), to estimate tree biomass (ABERE; BELETE; KEFALEW; 

SOROMESSA, 2017; DIBABA; SOROMESSA; WORKINEH, 2019; ESHETU; HAILU, 

2020; GEBEYEHU; SOROMESSA; BEKELE; TEKETAY, 2019a) in different forests. The 

use of such a model often leads to biased biomass and volume estimates for particular species, 
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forests, and sites because there are variations in wood density, tree allometry, form factor, and 

growth stage among species (HENRY; PICARD; TROTTA; MANLAY et al., 2011; NÁVAR; 

NÁJERA; JURADO, 2002). Hence, it is vital to develop site and species-specific models. 

However, given the great diversity of species and variability within species in tropical forests, 

various efforts have been made to develop mixed-species biomass and volume models (e.g., 

ASRAT, ZERIHUN; EID, TRON; GOBAKKEN, TERJE; NEGASH, MESELE, 2020a; 

CHAVE; RÉJOU‐MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al., 2014; MOKRIA; 

MEKURIA; GEBREKIRSTOS; AYNEKULU et al., 2018; MUGASHA; MWAKALUKWA; 

LUOGA; MALIMBWI et al., 2016). However, minimal effort has been made to develop 

mixed-species equations to estimate stem volume and biomass for Afromontane forests in 

Africa in general and Ethiopia in particular. As a result, our knowledge of the standing volume 

of wood, biomass stocks, and carbon storage in Afromontane forests is limited. Therefore, the 

objective of this study was to develop a mixed-species stem biomass and volume estimation 

model and accurately estimate the standing volume of wood, biomass, and carbon stock in the 

Chilimo dry Afromontane Forest in Central Ethiopia. In addition, we compared the predictive 

performance of our newly developed model with the previously developed pan tropical and 

other models. We believe that these models will be useful for conservation and REDD+ projects 

and research in global environmental change in Afromontane forests across Africa. 

2 Materials and Methods  

2.1. Study site description 

This study was conducted in the Chilimo forest, located 97 km west of Addis Ababa in 

central Ethiopia. It is located between 38° 05' - 38° 15' E longitude and 9° 00' - 10° 10' N 

latitude, with an altitudinal range of 1700 - 3200 m (Figure 1). This forest is one of the few 

remnants of dry Afromontane forests that once covered Ethiopia’s Central Plateau. Currently, 

the forest has a total area of 4500 ha. SOROMESSA e KELBESSA (2013) recorded 213 plant 

species in 83 families. The main species in the canopy layers are Juniperus procera, 

Podocarpus falcatus, Prunus africana, Olea europaea ssp. cuspidata, Hagenia abyssinica, 

Apodytes dimidiata, Ficus spp., Erythrina brucei, and Croton macrostachus (KASSA; 

CAMPBELL; SANDEWALL; KEBEDE et al., 2009; SOROMESSA; KELBESSA, 2013). In 

the past, the forest was under state control, but this has weakened since 1991. Deforestation in 

the Chilimo forest has increased significantly despite the forest’s designation as one of the 

National Forest Priority Areas (KASSA; CAMPBELL; SANDEWALL; KEBEDE et al., 2009). 
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Increasing timber extraction rates, along with grazing and farming pressure, have radically 

reduced the forest cover (KASSA; CAMPBELL; SANDEWALL; KEBEDE et al., 2009). The 

forest is currently managed by local forest user groups through a participatory forest 

management scheme (MOHAMMED; INOUE, 2014). 

Figure 1: Map of the study area overlaid with the distribution map of dry Afromontane forests 

following FRIIS; DEMISSEW e BREUGEL (2010). 

 

2.2. Data collection 

2.2.1. Forest inventories 

We employed a systematic sampling technique to collect vegetation data in February 

and March 2018. Overall, 161 sample plots (20 × 20 m) were established along the transect 

lines. The first transect was aligned parallel to the forest's edge (30 m) and others were laid out 

systematically at 500 m intervals. The first plot was located randomly, and the subsequent plots 

were established at 300 m intervals along the transect lines. First, the boundary of each plot was 

marked with pegs and/or plastic ropes. Then, the diameter at breast height (dbh) and the total 



83 
 

 

height (ht) of all trees with dbh ≥ 2.0 cm, which falls within the plot boundary, were measured 

using a diameter tape and Vertex IV ultrasonic hypsometer (Haglöf Sweden AB, Långsele, 

Sweden). A tree was judged to be within the plot when the center of the stem appeared to fall 

on or within the margins of the plot. Finally, the spatial location (latitude and longitude), 

elevation, and slope of each plot were measured using the Garmin GPS-72 receiver and Suunto 

Clinometer.  

2.2.2. Tree species selection and measurement 

First, we selected seven dominant tree species (Juniperus procera, Podocarpus falcatus, 

Allophylus abyssinicus, Olea Africana ssp. Cuspidata, Olinia rochetiana, Rhus glutinosa, and 

Scolopia theifolia) based on the basal area information generated from the inventory data. 

Second, representative sample trees were randomly chosen across the range of diameter size 

classes for the seven species among the fallen tree species during the asphalt road construction 

that passes through the Chilimo forest. Additional data were obtained from Tesfaye et al. 

(TESFAYE; BRAVO-OVIEDO; BRAVO; RUIZ-PEINADO, 2016). The selected seven 

dominant tree species altogether contributed over 89 % of the total basal area of the Chilimo 

forest.  

A total of 194 trees were used to develop the stem volume and biomass model. The 

number of harvested trees was determined based on the relative abundance and diameter size 

distribution of each tree species. Hence, we sampled a larger number of trees from the abundant 

tree species with a larger diameter size distribution (e.g., Juniperus procera and Podocarpus 

falcatus) and a lower number of trees from the less abundant tree species. Before felling, the 

diameters at the ground level, 0.3 m, and 1.3 m, as well as the total height of the selected trees, 

were measured. These measurements were used to calculate the stump volume (parts of the 

stem from ground level to 0.3 m). After felling, the stem was sectioned and the total length and 

over-bark diameters at the lower and upper part of each section were measured. The section 

volume was computed using the Smalian formula, whereas the top section was computed using 

a cone formula (BURKHART; TOMÉ, 2012; WEST, 2015). The section volumes were 

summed up to estimate the total stem volume of each tree. The volume of branches and leaves 

was not considered in this study. The wood densities (determined at 12 % moisture content) of 

five tree species (Allophylus abyssinicus, Olea Africana ssp. Cuspidata, Olinia rochetiana, 

Rhus glutinosa, and Scolopia theifolia) recorded from the Chilimo forest were obtained from 

TESFAYE; BRAVO-OVIEDO; BRAVO e RUIZ-PEINADO (2016). Densities of Juniperus 

procera and Podocarpus falcatus were obtained from ICRAF’s wood density database 
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(CARSAN; ORWA; HARWOOD; STROEBEL et al., 2014). The stem biomass was calculated 

by multiplying the stem volume estimates by their basic wood densities, as done in 

BURKHART e TOMÉ (2012).  

2.3. Data Analysis 

2.3.1. Model development 

The commonly used dendrometeric variables i.e., diameter (dbh), height (ht), and wood 

density (ρ) were used as independent predictor variables. We tested six-volume and eight 

biomass estimation equations (Table 1). We selected the equations from literature based on 

their widespread use in Ethiopia and elsewhere (BERHE, 2009; BURKHART; TOMÉ, 2012; 

GERESLASSIE; WORKINEH; TAKELE; ADEM et al., 2019; MUGASHA; EID; 

BOLLANDSÅS; MALIMBWI et al., 2013; PICARD; SAINT-ANDRÉ; HENRY, 2012).  

Table 1: Volume and biomass equations tested in this study. 

Form No Mathematical forms References 

Linear 

           Volume equations 

M1 𝑙𝑛(𝑣) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ) + ε HUSCH (1963) 

M2 𝑙𝑛(𝑣) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ2ℎ𝑡) + ε SPURR (1952) 

M3 𝑙𝑛(𝑣) = 𝑙𝑛(𝛽0) + 𝛽1 ln(𝑑𝑏ℎ2) + 𝛽2𝑙𝑛(ℎ𝑡) + ε SCHUMACHER (1933) 

Nonlinear 

M4 v = 𝛽0 (𝑑𝑏ℎ)𝛽1 ε HUSCH (1963) 

M5 v = 𝛽0 (𝑑𝑏ℎ2ℎ𝑡)𝛽1 ε SPURR (1952) 

M6 v = 𝛽0 (𝑑𝑏ℎ2)𝛽1(ℎ𝑡)𝛽2ε SCHUMACHER (1933) 

Linear 

           Biomass equations 

M7 𝑙𝑛(𝑏) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ) + ε HUSCH (1963) 

M8 𝑙𝑛(𝑏) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ2ℎ𝑡) + 𝛽2𝑙𝑛(𝜌) + ε SPURR (1952) 

M9 
𝑙𝑛(𝑏) = 𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ) + 𝛽2𝑙𝑛(ℎ𝑡) +𝛽3𝑙𝑛(𝜌) + ε 

SCHUMACHER (1933) 

M10 𝑙𝑛(𝑏) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝜌𝑑𝑏ℎ2ℎ𝑡) + ε CHAVE et al. (2014) 

Nonlinear 

M11 b = 𝛽0 (𝑑𝑏ℎ)𝛽1 ε HUSCH (1963) 

M12 b = 𝛽0 (𝑑𝑏ℎ2ℎ𝑡)𝛽1 (𝜌)𝛽2  ε SPURR (1952) 

M13 b = 𝛽0 (𝜌𝑑𝑏ℎ2ℎ𝑡)𝛽1 ε CHAVE et al. (2014) 

M14 b = 𝛽0 (𝑑𝑏ℎ)𝛽1(ℎ𝑡)𝛽2(𝜌)𝛽3 ε SCHUMACHER (1933) 
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Note: ln = natural logarithm, v = stem volume (m3), b = stem biomass (kg), ht = total height 

(m), dbh = diameter at breast height (cm), and ρ = wood density (g cm3). 

It must be noted that M1, M2, and M3 are the linear versions of the nonlinear volumes 

M4, M5, and M6, respectively. Similarly, among the biomass models, M1, M2, M3, and M4 

are the linear versions of the nonlinear M5, M6, M7, and M8, respectively. Although the linear 

and nonlinear versions (e.g., M1 and M4 of the volume equations) are mathematically 

equivalent, they are not identical in the statistical sense (PARRESOL, 1999; SILESHI, 2014). 

As a result, the estimated parameters (e.g., slope) and biomass may slightly differ. Because 

some authors use each version when developing biomass estimation models, we opted to 

compare the linear and nonlinear versions and determine whether they performed differently. 

Although 194 trees were initially sampled, one tree with a diameter of 98.0 cm 

consistently appeared as a leverage point across all models. Therefore, we excluded that tree 

from all analyses. Even then, we noted a variable number of outliers and leverage points 

depending on the model. Since the combined effect of outliers and leverage points can 

destabilize the coefficients of models with multiple predictors, we used robust regression 

(TASKINEN; WARTON, 2013) compared to ordinary least squares (OLS) regression. The 

model fitting was done by rlm and nlrob functions in the MASS and robustbase packages of R, 

respectively. These R functions fit the models by the iteratively reweighted least-squares 

(IRLS) method using the Tukey bisquare weighting method (RIAZOSHAMS; MIDI; 

GHILAGABER, 2019). We compared the performance of the different models using model 

selection criteria and graphical analysis of residuals. Since linear models cannot be compared 

directly with nonlinear models, we conducted all model comparisons on the arithmetic scale. 

First, we back-transformed the predictions of the linear models to the original units to allow 

comparison with our nonlinear model and other published equations. We used a correction 

factor (CF) to correct the systematic bias induced during the back-transformation of 

logarithmically transformed data (CHAVE; ANDALO; BROWN; CAIRNS et al., 2005; 

SILESHI, 2014). The CF is normally computed from the mean square of error (ε) as follows: 𝐶𝐹 = 𝐸𝑋𝑃 (𝜀22 )                                                                                                                (1) 

Next, we calculated various model selection criteria in the arithmetic domain to compare 

linear and nonlinear models straightforwardly. For this purpose, we chose the Nash and 

Sutcliffe efficiency factor (NSEF), the average systematic error (Bias), the root means square 

of error (RMSE), the mean absolute percent error (MAPE), and the bias-corrected Akaike 
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information criterion (AICc). We did not include the R2 due to its well-known limitations 

(SILESHI, 2014). Instead, we used the NSEF, because its calculation is straightforward for both 

linear and nonlinear models. The NSEF formula is the same as the R2 of linear regression, but 

it is applied directly to the original biomass data and the predictions from any one of the models 

as follows:  𝑁𝑆𝐸𝐹 =  1 − ∑ (𝑦𝑖−𝑦̂𝑖)2𝑛𝑖=1∑(𝑦𝑖−𝑦̅)2                                                                                                   (2) 

where yi is the observed (measured) value, ŷi is the predicted value, and ȳ is the average of the 

observed value. NSEF varies from −∞ to 1, with values close to 1 being the best, and negative 

values indicating an unacceptable model performance. 

Calculating the AIC (AKAIKE, 1973) for models estimated using least square methods 

is tricky because AIC is formulated initially based on the negative log-likelihood from 

maximum likelihood estimation. Following GAGNÉ e DAYTON (2002), we calculated the 

AIC from the residual sum of squares (RSS) of the regression as follows: 𝐴𝐼𝐶 = 𝑛 ∗ ln (𝑅𝑆𝑆𝑛 ) + 2𝑝                                                                                                      (3)  

where n is the number of observations, and p is the number of model parameters. To correct for 

small sample sizes, we used the bias-corrected AIC (hereafter AICc) computed as: 𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +  2p(p+1)𝑛−𝑝−1                                                                                                           (4)  

Then, we computed the Akaike weights (AICw) from the AICc cohort of models as 

recommended by JOHNSON e OMLAND (2004). AICw indicates the probability that the 

model is the best among the set of candidate models, thus measuring the strength of evidence 

for each model. Therefore, we chose the model with AICw close to 1 as the best. For all models, 

the bias (%), MAPE (%), and RMSE (%) were calculated as follows in the arithmetic domain: 

𝐵𝑖𝑎𝑠 (%) =  1𝑅 ∑ 100𝑛𝑅𝐼=1 ∑ 𝑦𝑖−𝑌̂𝑖𝑌𝑖𝑛𝑖=1                                                                                          (5) 

𝑀𝐴𝑃𝐸 (%) =  1𝑅 ∑ 100𝑛𝑅𝐼=1 ∑ |𝑦𝑖−𝑌̂𝑖|𝑌𝑖𝑛𝑖=1                                                                                      (6)  

𝑅𝑀𝑆𝐸 (%) = 1𝑅 ∑ 100𝑅𝑖=1 √1𝑛 ∑ (𝑦𝑖−𝑌̂𝑖𝑦𝑖 )𝑛𝑖=1                                                                              (7)  

where R is the number of resampling (200), n is the number of trees per resampling r, and yi 

and ŷi are the observed and predicted biomass and volume values.  
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We also calculated a relative measure hereafter referred to as rRMSE calculated as a 

ratio of RMSE to the mean values of the predicted biomass and expressed in %, i.e., 

100*(RMSE/mean). This measure is sometimes called the coefficient of variation and is used 

for comparing models (e.g. CHIANUCCI; PULETTI; GROTTI; FERRARA et al., 2020; 

VONDERACH; KÄNDLER; DORMANN, 2018). The rRMSE estimates the error in 

estimation as a percentage of the predicted mean biomass. Since the above criteria do not reveal 

problems inherent in the model specification (SILESHI, 2014), we conducted various model 

diagnostics, including tests of normality, homoscedasticity of errors, and influence statistics 

(Table S1). We used the Shapiro-Wilk test to determine the normality of residuals. Tests of 

normality and homogeneity, alone, are not adequate (SILESHI, 2014). Therefore, we conducted 

additional diagnostics to check whether certain observations have undue influence on the 

coefficients. There are two types of outliers, i.e., those in the response variable and outliers to 

the predictors are called leverage points (TASKINEN; WARTON, 2013). We used residual 

plots of standardized residuals to detect outliers against the explanatory variables to reveal 

patterns and deemed values exceeding -2.0 or +2.0 as outliers that could cause serious 

heteroscedasticity. Since residual plots cannot reveal leverage points, we identified leverage 

points from the robust regression analysis (Table S1). We conducted a one-way analysis of 

variance (ANOVA) to test whether residuals from our best models vary with species. The 

percent relative standard error (PRSE) statistics were also computed to assess the reliability of 

the parameter estimation of a model (SILESHI, 2014). Sileshi considered that a coefficient 

estimate is unreliable if PRSE > 25 %. 

In linear models where two or more variables were included, we also checked the 

variance inflation factor (VIF) to assess multicollinearity between the predictor variables 

(SILESHI, 2014). In nonlinear models, we checked for symmetry in estimated parameters using 

Hougaard’s measure of Skewness (|g|). It must be noted that nonlinear regression assumes that 

parameters are close to linear so that the uncertainty about the value of each parameter is 

symmetrical. A parameter with g > 0.25 is said to be noticeably skewed, and in such cases, 

alternative model parameterization is strongly advised (HOUGAARD, 1985) 

2.3.2. Model validation  

In the analyses above, we have only examined the ability of various models to describe 

the data at hand, which is referred to as in-sample fit. This is sometimes confused with the 

predictive power of the model or its out-of-sample fit. However, models usually have a grossly 

inflated performance in-sample compared to their performance in follow-up studies 
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(IOANNIDIS, 2008). The goodness of fit and model selection criteria also tend to better fit the 

sample data, especially when models are over-fitted (SILESHI, 2014). Therefore, we employed 

the Monte Carlo cross-validation technique to evaluate the biomass prediction performance of 

the models. The fits of the models were examined by randomly splitting the data (193 trees) 

into two parts, with 70% for model development and 30% for model validation; this process 

was repeated 200 times. The commonly used model fit statistics (Equations 5, 6, and 7) were 

calculated during every repetition using the randomly selected data, and finally, the average 

values of the 200 repetitions were computed (TEMESGEN; ZHANG; ZHAO, 2014). A model 

that provides smaller values of these metrics was considered the best model (Table 5). The final 

parameter estimates were obtained by fitting all models with the entire dataset. All of the 

statistical analyses were computed using the R software (R Core Team TEAM, 2013). 

2.3.3. Comparison with previously published (generic) models 

We compared the predictive performance of our biomass models with the previously 

published pan-tropical models and models from tropical dry forests in Africa (Table 2). We 

chose these models for comparison with our model because they are commonly used for 

biomass estimation in Ethiopia and elsewhere (see GEBEYEHU; SOROMESSA; BEKELE; 

TEKETAY, 2019a; KENDIE; ADDISU; ABIYU, 2019; SIRAJ, 2019).  

Table 2: Previously published models tested using our data set. 

Mathematical form References 𝐛 =  𝟎. 𝟏𝟏𝟐 (𝝆𝒅𝒃𝒉𝟐𝒉𝒕)𝟎.𝟗𝟏𝟔 CHAVE et al. (2005) 𝐛 =  𝟎. 𝟎𝟔𝟕𝟑 (𝝆𝒅𝒃𝒉𝟐𝒉𝒕)𝟎.𝟗𝟕𝟔 CHAVE et al. (2014) 𝐛 =  𝟎. 𝟏𝟗𝟔 (𝒅𝒃𝒉)𝟐.𝟏𝟒𝟏(𝝆)𝟎.𝟔𝟐𝟓 TETEMKE et al.(2019) 𝐥𝐧(𝐛) = −𝟏. 𝟏𝟑𝟒 + 𝟏. 𝟗𝟔𝟗𝐥𝐧(𝒅𝒃𝒉) + 𝟎. 𝟐𝟗𝟓𝐥𝐧(𝒉𝒕)+ 𝟏. 𝟏𝟖𝟓𝐥𝐧(𝝆) 
DJOMO et al. (2016) 

Note: ln = natural logarithm, b = stem biomass (kg), ht = total height (m), dbh = diameter at 

breast height (cm), and ρ = wood density (g cm3). 

The usual criteria used for comparing local models have some limitations when 

comparing local with generic models. For example, R2 is an inadequate criterion for comparing 

linear and nonlinear models because a nonlinear model does not have a true R2 due to the 

absence of a true intercept. The RMSE is scale-dependent, and therefore, it does not help 

compare models in different formulations (e.g., linear vs. nonlinear). It is also hard to determine 
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the magnitude of RMSE in the absence of a reference point. Hence, we used rRMSE, MAPE 

(%), and NSEF (%) applied directly to the original data and the predictions from any one of the 

models.  

2.3.4. Estimation of stand-level basal area, volume, biomass, and carbon stocks 

The density (stem ha-1) and basal area (m2 ha-1) were calculated for each tree species. 

Each tree's stem volume and biomass were calculated using the newly developed volume (M2) 

and biomass model (M10) in this study. The belowground (root) biomass was estimated by 

using a 0.20% conversion factor of the stem biomass (MACDICKEN, 1997). The total biomass 

(the sum of the stem and root biomass) was converted into carbon by dividing the total biomass 

value by 2, following the procedures in PEARSON; WALKER e BROWN (2005). 
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3 Results 

3.1. Harvested tree species 

The 194 trees used here accounted for 89 % of the total basal area in the Chilimo forest 

(Table 3). The diameter, total height, and wood density ranged between 6.2 and 85.0 cm, 5.6 

and 27.4 m, and 0.52 and 0.82 g cm-3. Most of the tree species had diameters concentrated in a 

narrow range. For example, Olea africana ssp. Cuspidata, Allophylus abyssinica, Olinia 

rochetiana, Rhus glutinosa, and Scolopia theifolia had diameters less than 29 cm, while 

Juniperus procera and Podocarpus falcatus had diameters ranging between 11.6 and 85.0 cm. 

However, most tree species exhibited little variation in the wood density values (Table 3). 

Table 3: Tree species used for model building and their wood density, diameter at breast 

height, and total height measurements. 

No Tree species N ρ 
dbh (cm) ht (m) 
Mean ± SD Range Mean Range 

1 Juniperus procera 89 0.58 34.3 ± 17.3 11.6-85.0 16.2 ± 5.3 6.8-27.4 

2 Podocarpus falcatus 15 0.52 40.6 ± 15.4 20.0-64.0 19.2 ± 4.9 11-25.6 

3 Olea africana 20 0.82 14.5 ± 5.9 6.3-28.8 10.6 ± 2.1 5.9-14.5 

4 Allophylus abyssinicus 15 0.59 11.3 ± 3.9 6.4-21.3 10.6 ± 3.1 7.0-17.0 

5 Olinia rochetiana 20 0.66 14.9 ± 6.7 6.2-27.5 12.6 ± 2.9 7.3-19.4 

6 Rhus glutinosa 15 0.61 15.6 ± 4.9 9.0-23.5 11.3 ± 3.0 6.0-17.4 

7 Scolopia theifolia 20 0.64 11.8 ± 4.1 6.4-22.0 8.2 ± 1.9 5.6-13.0 

Note: SD = standard deviation, N = the number of sample trees (No ha-1), dbh = diameter at 

breast height (cm), ht = total height (cm), ρ = wood density (g cm-3), and Range = minimum 

and maximum values. 

3.2. Volume estimation models 

The parameter estimates, their corresponding standard errors, and the PRSE statistics of 

the evaluated volume models are given in Table 4. All parameters of the models were 

statistically significant at α = 0.001 levels. The Monte Carlo cross-validation statistics of the 

models are given in Table S4. Among the models, model 2 (M2) was the best model to predict 

the stem volume. This model produced the lowest RMSE, MAPE, and AICc and higher NSEF 

values. The observed and predicted stem biomass graphs using the evaluated models are shown 

in Figure S1. Among the models, M2 and M6 provided the closest prediction to the observed 

stem volume.  
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Table 4: Parameter estimates, standard errors (in parenthesis), and PRSE statistics for the 

evaluated volume estimation models. 

No 
  

Estimated parameters  PRSE 

β0 β1 β2   β0 β1 β2 
Linear models 

      

M1 
 

-8.907 

(0.112) 

2.385 

(0.036) 
  

1.25 
 

1.5 
  

M2 
 

-9.909 

(0.095) 

0.954 

(0.011) 
  

0.96 
 

1.12 
  

M3 
 

-9.883 

(0.127) 

0.962 

(0.026) 

0.925 

(0.090) 
 

1.29 
 

2.72 
 

9.7 
 

Nonlinear models 
      

M4 
 

0.0015 

(0.000) 

1.751 

(0.045) 
  

18.15 
 

2.55 
  

M5 
 

0.0002 

(0.000) 

0.845 

(0.014) 
  

15.09 
 

1.6 
  

M6 
 

0.0001 

(0.000) 

0.827 

(0.019) 

0.939 

(0.068)   18.02 
 

2.35 
 

7.28 
 

Note: the best models among linear and nonlinear models are given in bold.  

The residual graphs of the evaluated models are shown in Figure 2. The residuals of 

linear models were randomly scattered around zero lines for all fitted values, while the residuals 

of nonlinear models followed a funnel shape distribution indicating non-constant variance. 

Furthermore, the nonlinear models tended to have more outliers than the linear models, and the 

parameter “β0” in all nonlinear models was also significantly skewed (Table S1 and S2). Taking 

all these into consideration, we selected M2 rather than the non-linear models for volume 

estimation. ANOVA did not reveal significant variation with species in residuals from M2. 
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Figure 2: Residual graphs for the evaluated volume models. 

 

3.3. Stand characteristics and biomass estimation 

The number of trees, basal area, and stem biomass of trees in the Chilimo dry 

Afromontane Forest is presented in Table 5. The average standing volume of wood was 303.0 

m3 ha-1 in the Chilimo forest. Overall, Podocarpus falcatus (43.5%), Juniperus procera (38.1 

%), Schefflera volkensii (7.5%), and Schefflera abyssinica (2.2%) were the tree species that 

exhibited the largest stem volume wood. Each of these species also comprised 49.1, 39.3, 6.2, 

and 2.1 % of the total stem biomass. The measured stem biomass values were highly variable 

across the forest, with an average value of 283.8 Mg ha-1. The estimated carbon stocks also 

varied between 15.3 and 989.4, with a mean value of 173.6 Mg ha-1 in the Chilimo forest. 
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Table 5: Summary of forest inventory results, estimated stem volume (M2), biomass (M10), 

and carbon stocks in the Chilimo dry Afromontane Forest. 

Stand characteristics Unit Mean Minimum Maximum SD 

Stand density stems ha-1 631.5 25.0 2600.0 455.3 

Basal area m2 ha-1 24.4 1.5 100.9 15.1 

Stem volume in the forest m3 ha-1 303.0 7.5 1592.0 312.8 

Stem biomass Mg ha-1 283.8 25.5 1649.0 298.9 

Belowground biomass Mg ha-1 56.8 5.1 329.8 59.8 

Total biomass Mg ha-1 340.6 30.63 1978.8 358.7 

Carbon stock Mg ha-1 170.3 15.3 989.4 179.4 

3.4. Biomass estimation models 

The parameter estimates, their corresponding standard errors, and the PRSE statistics of 

the evaluated biomass models are given in Table 6. All parameters of the nonlinear models were 

significantly different from zero (p < 0.001) except parameters β2 and β3 of M8 and M9, which 

were not. The goodness-of-fit statistics based on cross-validation of the evaluated models are 

given in Table S4. The cross-validation statistics indicated that M9 from the linear models and 

M12 from the nonlinear models were the best for biomass estimation. However, the PRSE 

statistics have shown that some of the parameters of M8, M9, M12, M13, and M14 had PRSE 

> 25 %. The observed and predicted stem biomass graphs using the evaluated models are shown 

in Figure 3. Visual analysis of the graphs shows that except for M7 and M11, the remaining 

models overestimated the stem biomass (Figure S2). However, M10 provides the closest stem 

biomass prediction to the remaining biomass models.  

Table 6: Parameter estimates, standard errors (in parentheses), and PRSE statistics for the 

evaluated biomass models obtained using the entire dataset. 

No 
Estimated parameters 

 
PRSE 

β0 β1 β2 β3 β0 β1 β2 β3 

Linear models      

M7 -2.238 

(0.107) 

2.301 

(0.034) 
   4.8 1.5   

M8 -3.127 

(0.093) 

0.929 

(0.011) 

0.278* 

(0.155) 
  3.0 1.2 55.9  
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M9 -3.142 

(0.123) 

1.847 

(0.051) 

0.945 

(0.083) 

0.274* 

(0.157) 
 3.9 2.8 8.8 57.2 

M10 -2.983 

(0.092) 

0.949 

(0.011) 
   3.1 1.2   

Nonlinear models      

M11 0.913 

(0.162) 

1.744 

(0.044) 
   17.8 2.5   

M12 0.123 

(0.020) 

0.847 

(0.014) 

0.593 

(0.185) 
  16.6 1.6 31.2  

M13 0.176 

(0.045) 

1.355 

(0.048) 

1.067 

(0.100) 

0.107 

(0.266) 
 14.2 1.6 25.8 3.5 

M14 0.138 

(0.020) 

0.849 

(0.013) 
   9.4 248.6   

Note: * indicates non-significant coefficients at α = 0.05. The best-fit model is given in bold.  

The residual graphs of the evaluated models are shown in Figure 3. The residuals of 

linear models were randomly scattered around zero lines for all fitted values, while the residuals 

of nonlinear models followed a funnel shape distribution indicating non-constant variance. 

Furthermore, the parameter “β0” in all nonlinear models was significantly skewed, and the 

nonlinear models tended to have more outliers than the linear models (Table S1 and S2). 

Moreover, the assumption of multicollinearity was not violated since none of the explanatory 

variables of the evaluated linear models showed a VIF value higher than 5. Taking all these into 

consideration, we selected M10 as the best model for stem biomass estimation. 
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Figure 3: Residual graphs for the evaluated biomass models. 
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3.5. Comparison of our models with the previously published biomass models 

The stem biomass prediction and the associated fit statistics of the evaluated models are 

given in Table S5. The models by Chave et al. (2005 and 2014) systematically overestimated 

stem biomass, especially for trees with dbh > 25 cm (Figure 4), which is evidenced by 

systematically declining residuals (Figure 5). Conversely, the model developed by TETEMKE; 

BIRHANE; RANNESTAD e EID (2019) was less accurate and severely underestimated the 

stem biomass. Our best model (M10) and the model developed by Djomo showed the highest 

prediction performance (Table S5 and Figure 4). However, the model by Djomo et al. (2016) 

was developed for small-diameter trees (dbh < 32 cm) and is not consistent for larger trees. This 

indicated that our best model (M10) is the most appropriate model to accurately estimate the 

stem biomass of trees. 

Figure 4: Comparison of biomass prediction performance by our best model and previously 

published biomass models. The dots in different colors represent the biomass prediction by 

each model and the lines represent the best-fit line.  
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Figure 5: Comparison of the residual plots of our best models with the generic biomass 

models using our dataset. 

 

4 Discussions 

Very few studies have attempted to develop stem volume equations in Ethiopia 

(BERHE; ASSEFA; TEKLAY, 2013; GERESLASSIE; WORKINEH; TAKELE; ADEM et al., 

2019; POHJONEN, 1991; TAKENAKA; ABEBE; TABUCHI, 2020; TESHOME, 2005; 

TSEGA; GUADIE; TEFFERA; BELAYNEH et al., 2019). In this study, we developed mixed 

species allometric equations using 193 individuals from seven dominant species from the 

Chilimo forest. The selected trees contributed over 89% of the total basal area of the forest. The 

number and diameter size range of the sampled trees used in the present study were relatively 

higher than in previous biomass model development efforts in Ethiopia. For instance, 

TETEMKE; BIRHANE; RANNESTAD e EID (2019) used 86 trees and developed a mixed-

species model for dry Afromontane forests in Northern Ethiopia. Similarly, MOKRIA; 

MEKURIA; GEBREKIRSTOS; AYNEKULU et al. (2018) and (ASRAT, ZERIHUN; EID, 

TRON; GOBAKKEN, TERJE; NEGASH, MESELE, 2020a) sampled 84 and 63 trees and 
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developed biomass models for exclosures and Dry Afromontane forests in northwestern and 

south-central Ethiopia, respectively.  

The evaluated volume models exhibited varied stem volume prediction performance 

(Table S4). The dbh-only model had the highest RMSE and MAPE and the lowest NSEF values, 

both in the linear and nonlinear forms. This indicates that diameter alone is not a sufficient 

predictor for stem volume estimation. The addition of height improved the prediction 

performance of the model by reducing the RMSE and MAPE by 11% and 5%, respectively. 

This is consistent with the findings of (e.g., CHAVE; ANDALO; BROWN; CAIRNS et al., 

2005; GOUSSANOU; GUENDEHOU; ASSOGBADJO; KAIRE et al., 2016; MATE; 

JOHANSSON; SITOE, 2015), who reported that the inclusion of height improved the 

predictive performance of a model. On the contrary, various studies (e.g., ASRAT, ZERIHUN; 

EID, TRON; GOBAKKEN, TERJE; NEGASH, MESELE, 2020b; MUGASHA; 

MWAKALUKWA; LUOGA; MALIMBWI et al., 2016; SEGURA; KANNINEN, 2005) have 

argued that the dbh-only model outperformed a volume model with height and dbh. This is 

mainly attributed to the difficulty of height measurement in a closed canopy tropical forest due 

to the complex crown form and stand condition (Sharma and Parton, 2007). In this study, the 

combined variable model (M2), which incorporates diameter and height, becomes the best 

volume model. The predictor variables of this model explained over 95% of the variances in 

the stem volume. Similarly, POHJONEN (1991) reported that a combined variable model (dbh 

and h) provided the best stem volume prediction with lower prediction error (10-12 %) for the 

Juniperus procera tree from the Menagesha Suba forest in Ethiopia. A combined variable 

function has been considered the most appropriate and preferred function for predicting the 

total stem volume of trees (BURKHART; TOMÉ, 2012). This is because the stem form of a 

tree is better explained by a combination of height and diameter than by height or diameter, 

alone (e.g. HUSCH; BEERS; KERSHAW JR, 2003 ). 

Very few tree volume estimation models have been found in Ethiopia (BERHE; 

ASSEFA; TEKLAY, 2013; GERESLASSIE; WORKINEH; TAKELE; ADEM et al., 2019; 

POHJONEN, 1991; TAKENAKA; ABEBE; TABUCHI, 2020; TESHOME, 2005; TSEGA; 

GUADIE; TEFFERA; BELAYNEH et al., 2019). This study reported a mixed-species volume 

model developed using 193 individuals from seven tree species from the Chilimo dry 

Afromontane Forest. The newly developed mixed-species volume model will help to accurately 

estimate the standing volume of wood and ensure sustainable management efforts in dry 

Afromontane forests in Ethiopia. Generally, there is a high demand for wood in Ethiopia, and 

the country is currently importing a large amount of wood to satisfy national demand. This 
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enables the country to allocate a large amount of hard currency to import processed wood and 

wood products (MEFCC, 2018). However, there is a huge amount of harvestable wood in the 

natural forests that can satisfy the growing wood demand in Ethiopia (MEFCC, 2018). Accurate 

estimation of the standing volume of wood from the natural forests in Ethiopia is constrained 

by the lack of site-specific volume models. Using our newly developed stem volume model, we 

noted that on average, 303.0 m3 ha-1 volume of wood is found in the Chilimo forest. The 

observed volume of wood is higher than the volume estimated from dry Afromontane forests 

in the Amhara region (SISAY; THURNHER; BELAY; LINDNER et al., 2017), Miombo 

woodlands in Tanzania (LUOGA; WITKOWSKI; BALKWILL, 2002), moist tropical forest in 

Nigeria (LOWE, 1997), and closed tropical broadleaf forests (BROWN; GILLESPIE; LUGO, 

1989) (Table S3). This implies that a large amount of wood is available in the Chilimo forest, 

which can be used under a sustainable forest management scheme. Additionally, domestic wood 

production from the Afromontane Forest will enable the country to save the hard currency 

allocated to import wood and use it for other purposes. However, care should be taken to 

enhance the regeneration of the harvested trees, minimize damage during harvesting, and 

develop locally applied logging regulations (i.e., determine minimum felling diameter, annual 

allowable cut, harvesting techniques, and identify the harvestable species) before beginning 

logging in the Chilimo forest. The observed variation in stand volume might be related to the 

differences in the stocking, basal area, tree allometry, and disturbance level among the forests. 

In our study, volume data is derived from the main stem of trees (branch wood volume is not 

accounted for), whereas in the other studies, the total volume of trees was reported. The mean 

density (631.5 stems ha-1) and basal area (24.4 m2 ha-1) in our study area were higher than the 

findings from Afromontane forests in the Amhara region (580 stems ha-1) and Miombo 

woodlands in Tanzania (347.6 stems ha-1 and 9.8 m2 ha-1). On the other hand, the Chilimo forest 

is one of the community-managed forests, and most trees are concentrated in the lower and 

medium diameter size class (97 % are < 60 cm diameter class), which indicates that the forest 

is regenerating and recovering from the past disturbances. It is well known that undisturbed 

forests with many trees accumulate more volume than disturbed forests. 

Biomass models are usually developed by adopting direct and indirect methods. The 

direct method involves felling trees and weighting, whereas the indirect method requires 

species-specific volume, wood density, and biomass expansion factor (BEF) information 

(PICARD; RUTISHAUSER; PLOTON; NGOMANDA et al., 2015). It is well known that tree 

biomass can be accurately determined by the direct weighting method. However, this method 

is time-consuming and expensive (HUSCH; BEERS; KERSHAW JR, 2003 ). In this study, we 
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determined the stem biomass by multiplying each tree's volume and respective wood density 

following the procedures (BURKHART; TOMÉ, 2012). This is mainly related to the shortage 

of time to harvest and collect the data from the study area. Uncertainty in stem biomass 

estimation might occur for such computations compared to the direct weighting method. 

Despite this fact, the biomass model based on dbh alone has shown lower efficiency compared 

with multiple predictor models (Table 6). A model with one predictor variable (dbh-based 

model) has shown poor prediction performance as evidenced by larger RMSE (37%) and 

MAPE (24%) values (Table S4). The addition of height and wood density improved the biomass 

prediction performance of the model by reducing the RMSE by 9 % and MAPE by 5%. This 

indicates that height and wood density enabled the capture of more variability in stem biomass 

from the sampled trees (CHAVE; RÉJOU‐MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al., 

2014). Although the cross-validation statistics show that M9 and M12 are the best models, the 

PRSE statistics revealed that some parameters of M8, M9, M12, M13, and M14 had PRSE > 

25 % and parameters β2 and β3 of M8 and M9 were not significantly different from zero. In line 

with this, SILESHI (2014) indicated that a coefficient estimate of a model is unreliable if PRSE 

is greater than 25 %. Hence, these models cannot be reliably used for biomass prediction 

purposes. Accordingly, we selected the combined variable model (M10) which comprised 

diameter (dbh), height (ht), and wood density (ρ) for biomass estimation. This model explained 

over 96% of the variation in the stem biomass measurements. This is consistent with various 

studies (e.g., CHAVE; RÉJOU‐MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al., 2014) that 

reported a combined variable model provided better biomass prediction than the other models. 

The biomass estimated in this study (340.6 Mg ha-1) was less than the biomass estimates 

from the South African Mistbelt forest (MENSAH; VELDTMAN; DU TOIT; GLÈLÈ KAKAÏ 

et al., 2016) and closed-canopy tropical forests in 12 countries in Africa (LEWIS; SONKE; 

SUNDERLAND; BEGNE et al., 2013). However, it was comparatively higher than the 

estimates from the moist Afromontane forest in Ethiopia (WOOD; TOLERA; SNELL; 

O'HARA et al., 2019), the tropical rain forest in Costa Rica (CLARK; CLARK, 2000), the 

Montane forest in Congo (IMANI; BOYEMBA; LEWIS; NABAHUNGU et al., 2017), and 

Mata Atlantic forest in Brazil (ALVES; VIEIRA; SCARANELLO; CAMARGO et al., 2010) 

(Table S3). Similarly, the carbon stock (170.3 Mg C ha-1) estimates in this study were higher 

than the estimates from humid forest in Congo (XU; SAATCHI; SHAPIRO; MEYER et al., 

2017) and Montane forest in Tanzania (WILLCOCK; PHILLIPS; PLATTS; BALMFORD et 

al., 2014), but lower than the estimates from moist Afromontane forest in Ethiopia (MEWDED; 

LEMESSA, 2019), South African Mistbelt forest (MENSAH; VELDTMAN; DU TOIT; 
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GLÈLÈ KAKAÏ et al., 2016), tropical rainforest in Gabon (GOÏTA; MOULOUNGOU; 

BÉNIÉ, 2019), Brazilian Amazonia forest (LIMA; SUWA; DE MELLO RIBEIRO; 

KAJIMOTO et al., 2012), and Montane rainforest (MUNISHI; SHEAR, 2004) in Tanzania. 

The observed variation might be related to the difference in the models used to estimate the 

biomass, the disturbance level, the species composition, and the differences in the number of 

larger diameter trees, which constituted a significant amount of biomass as evidenced by the 

findings in moist forests across the tropics (SLIK; PAOLI; MCGUIRE; AMARAL et al., 2013). 

Differences in biomass estimates for dry and moist tropical forests have been attributed to the 

use of different allometric equation forms (e.g. POORTER; BONGERS; AIDE; ZAMBRANO 

et al., 2016). The forest structure also showed a larger number of trees in the lower and middle 

diameter classes, which indicates that the forest was in a growth stage. Overall, the Chilimo 

forest has a substantial amount of biomass and carbon stocks compared with the estimates from 

other tropical forests in Africa. This highlights the importance of the dry Afromontane Forest 

for climate change mitigation and the carbon market.  

Compared with our newly developed model, the mixed-species equation developed by 

TETEMKE; BIRHANE; RANNESTAD e EID (2019) severely underestimated the stem 

biomass of trees in the present study (Table S5). On the other hand, the generic pan-tropical 

models consistently overestimated the stem biomass of trees above dbh ≥ 30 cm (Table S5 and 

Figure S3). Given the importance of large trees in the carbon budget, the biomass in large trees 

must be accurately estimated. However, the generic pan-tropical models were not able to predict 

biomass for the larger trees; this implies that the generic pan-tropical models are inferior to our 

models. This is consistent with the previous studies that reported that the CHAVE; RÉJOU‐

MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al. (2014) model tended to overestimate tree 

biomass compared with locally developed models (DJOMO; IBRAHIMA; SABOROWSKI; 

GRAVENHORST, 2010; NGOMANDA; OBIANG; LEBAMBA; MAVOUROULOU et al., 

2014; VAN BREUGEL; RANSIJN; CRAVEN; BONGERS et al., 2011). A possible 

explanation could be the difference in wood density range, tree allometry (diameter and height 

range), tree species composition, site quality, and climatic condition, which affect the efficiency 

of the compared models. For example, the database used to develop the model in (CHAVE; 

RÉJOU‐MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al., 2014) showed that the tree species had 

a wood density ranging between 0.09 and 1.12 g cm3, a diameter between 5 and 122 cm, and a 

total height between 1.2 and 70.7 m whereas, in this study, the database comprised relatively 

lower wood density values ranging between 0.52 and 0.82 g cm3, a diameter between 6.2 and 

85.0 cm, and total height between 5.6 and 27.4 m. These variations could be the possible source 
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of uncertainty among the models used to accurately predict the stem biomass of trees. Despite 

this fact, the CHAVE; RÉJOU‐MÉCHAIN; BÚRQUEZ; CHIDUMAYO et al. (2014) equation 

remains the commonly used model, submitted to the UNFCC and various local studies, for 

calculating the biomass and CO2 emission levels from Ethiopian forests (GEBEYEHU; 

SOROMESSA; BEKELE; TEKETAY, 2019a; GIRMA; SOROMESSA; BEKELE, 2014; 

SIRAJ, 2019; SOLOMON; PABI; ANNANG; ASANTE et al., 2018; UN-REDD, 2017). In 

this study, we noted that the newly developed mixed-species model could accurately estimate 

the stem biomass compared to the frequently used pan-tropical and local models. Hence, we 

recommend the use of these models in the Chilimo Dry Afromontane Forest as well as other 

similar Afromontane forests elsewhere. However, caution should be taken to not use these 

models in a forest comprising different tree species, tree diameter size ranges, and climatic 

conditions than those in the dry Afromontane Forest considered in this study.  

This study presents a new approach to estimating the stem volume and biomass from 

the Chilimo Dry Afromontane Forest; we consider this an important decision-support tool for 

the management of forests in Ethiopia. This approach enables the government or forest owners 

to obtain accurate information on the stand-level standing stock of wood and stem wood 

biomass and make utilization plans. However, this study has some limitations that a subsequent 

study could improve. Due to the short data collection period, we could not collect the branch 

and foliage data and did not use the direct weighting method to estimate the biomass of tree 

components. Furthermore, wood density information did not include bark density, which could 

be a possible source of bias in biomass estimation. Hence, we recommend including this critical 

component of the tree and updating the equations in future efforts. 

5 Conclusions 

The lack of a biomass and volume equation is a major bottleneck hindering the national 

carbon stock estimation endeavors and management of natural forests in Ethiopia. The newly 

developed mixed-species equations can be used to accurately quantify the standing volume of 

wood and biomass stock and enable forest managers to develop appropriate management 

strategies for dry Afromontane forests. This study demonstrated that a combined variable model 

that includes diameter, height, and wood density was the best model for stem biomass and 

volume estimation. The frequently used pan-tropical models systematically overestimated stem 

biomass for larger trees and should not be used for biomass estimation in the present study area. 

This study also suggested that the Chilimo Dry Afromontane Forest has a substantial amount 

of biomass and carbon stocks compared with the estimates from other tropical forests in Africa. 
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This highlights the importance of the Afromontane Forest for climate change mitigation and 

the carbon market. Considering the limitations of this study, we recommend further research, 

as well as developing tapper and height-diameter equations for trees from Dry Afromontane 

forests. 
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7. Supplementary 

Table S1. Model diagnostics: significance (P) of Shapiro-Wilk test (PSW), outliers (%), 

leverage points (%). 

 

Component Models Model form 
PSW Outliers (%) Leverage (%) 

Volume M1 𝑙𝑛(𝑉) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ) + ε 0.8177 1.03 1.03 

 M2 𝑙𝑛(𝑉) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ2ℎ𝑡) + ε 0.0184 2.58 1.03 

 M3 𝑙𝑛(𝑉) = 𝑙𝑛(𝛽0) + 𝛽1 ln(𝑑𝑏ℎ2)+ 𝛽2𝑙𝑛(ℎ𝑡) + ε 

0.0750 2.58 1.55 

 M4 V = 𝛽0 ∗ (𝑑𝑏ℎ)𝛽1 ∗  ε <0.0001 5.15  

 M5 V = 𝛽0 ∗ (𝑑𝑏ℎ2ℎ𝑡)𝛽1 ∗  ε <0.0001 2.58  

 M6 V = 𝛽0  ∗ (𝑑𝑏ℎ2)𝛽1(ℎ𝑡)𝛽2 ∗ ε <0.0001 2.58  

      

Biomass M7 𝑙𝑛(𝐵) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ) + ε 0.6697 1.55 1.03 

 M8 𝑙𝑛(𝐵) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ2ℎ𝑡) +𝛽2𝑙𝑛(𝜌) + ε 

0.0917 4.12 18.04 

 M9 𝑙𝑛(𝐵) = 𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝑑𝑏ℎ) +𝛽2𝑙𝑛(ℎ𝑡) + 𝛽3𝑙𝑛(𝜌) + ε 

0.0194 3.61 13.92 

 M10 𝑙𝑛(𝐵) =  𝑙𝑛(𝛽0) + 𝛽1𝑙𝑛(𝜌𝑑𝑏ℎ2ℎ𝑡) + ε 0.0690 2.58 1.03 

 M11 B = 𝛽0 ∗ (𝑑𝑏ℎ)𝛽1 <0.0001 4.64  

 M12 B = 𝛽0 ∗ (𝑑𝑏ℎ2ℎ𝑡)𝛽1 (𝜌)𝛽2 <0.0001 2.06  

 M13 B = 𝛽0 ∗ (𝜌𝑑𝑏ℎ2ℎ𝑡)𝛽1 <0.0001 2.06  

 M14 B = 𝛽0  ∗ (𝑑𝑏ℎ)𝛽1(ℎ𝑡)𝛽2(𝜌)𝛽3 <0.0001 5.15  

 Chave 2005  NA 4.64  

 Chave 2014  NA 3.61  

 Djomo 2016  NA 1.55  

 Tetemke 2018  NA 6.19  
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Table S2. Skewness in the nonlinear parameter estimates. Values in bold are considerably 

skewed according to Hougaard’s measure of skewness (|g|). 
    

95% Confidence limits 
 

Models Parameter Estimate Lower Upper Skewness (|g|). 
Volume      

M4 β0 0.0006 0.0004 0.0008 0.460 
 

β1 2.0028 1.9186 2.0870 0.046 

M5 β0 0.0002 0.0001 0.0002 0.403 
 

β1 0.8459 0.8194 0.8723 0.040 

M6 β0 0.0001 0.0001 0.0002 0.476 
 

β1 0.8277 0.7897 0.8656 0.005 
 

β2 0.9334 0.7996 1.0673 0.020 

Biomass 
     

M11 β0 0.3718 0.2467 0.4970 0.457 
 

β1 1.9830 1.8992 2.0667 0.047 

M12 β0 0.1298 0.0880 0.1716 0.428 
 

β1 0.8453 0.8185 0.8722 0.033 
 

β2 0.6588 0.2948 1.0227 -0.008 

M13 β0 0.1403 0.1012 0.1795 0.381 
 

β1 0.8478 0.8213 0.8742 0.039 

M14 β0 0.1173 0.0743 0.1602 0.491 
 

β1 1.6583 1.5817 1.7349 0.003 
 

β2 0.9246 0.7884 1.0608 0.018 
 

β3 0.6828 0.3165 1.0492 -0.006 
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Table S3. Comparison of the estimated stem volume (m3 ha-1), biomass (Mg ha-1), and carbon 

stock (Mg ha-1) in the Chilimo forest with other tropical forests. 

 

Variables Site Mean References 

Volume 

 

Afromontane forest Ethiopia 28.9-92.4 Sisay et al., 2017 

Miombo woodlands in Tanzania 47.0 Luoga et al., 2002 

Closed tropical broadleaf forest 22.5-122.3 Brown et al., 1989 

Dense Forests in India 469.4 Chhabra et al.,2002 

Moist tropical forest in Nigeria 220.0 Lowe 1997 

Biomass 

 

Rain forest in Costa Rica 186.0 Clark and Clark 2000 

Brazilian Atlantic Forest 263.0 Alves et al., 2010 

Montane forest in Congo 290.0 Imani et al., 2017 

Closed-canopy Forests in Africa 395.7 Lewis et al., 2013 

Central Amazonia Forest 327.8 Castilho et al., 2006 

South African Mistbelt forest 358.1 Mensah et al., 2016 

Carbon 

 

Humid Forest in Congo 139.9 Xu et al., 2017 

Montane forest in Tanzania 130.0 Wilcock et al., 2014 

Primary forest in Indonesia 175.0 Stas 2014 

South African Mistbelt forest 179.0 Mensah et al., 2016 

Tropical rainforest in Gabon 223.0 Goïta et al., 2019 

Brazilian Amazonia Forest 253.0 Lima et al., 2012 

Moist Afromontane Forest Ethiopia 384.4 Mewded and Lemessa 2019 

Montane rainforest in Tanzania 427.0 Munishi and Shear 2004 
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Table S4. Model comparison and selection based on Monte-Carlo cross-validation statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

Models No 
Bias 
(Kg) 

RMSE 
(%) 

MAPE 
(%) 

NSEF 
(%) 

AICc AICw CF 

Volume models 

Linear 

M1 0.006 39.046 23.929 92.183 -380.1 0.0 1.004 

M2 -0.008 27.883 18.988 95.985 -473.8 1.0 1.001 

M3 -0.007 28.285 19.125 95.862 -469.5 0.2 1.001 

Nonlinear 

M4 -0.005 38.104 29.721 92.609 -598.9 0.0 NA 

M5 -0.004 24.007 25.887 97.086 -627.6 1.0 NA 

M6 -0.004 24.045 25.751 97.058 -607.7 0.0 NA 

Biomass models 

Linear 

M7 6.058 36.556 23.753 92.985 1807.0 0.0 1.003 

M8 -2.153 26.243 18.389 96.310 1692.7 0.0 1.001 

M9 -2.185 26.344 18.654 96.285 1683.6 1.0 1.001 

M10 -2.831 27.110 18.895 96.050 1699.4 0.0 1.001 

Nonlinear 

M11 2.302 36.001 29.302 93.190 1421.9 0.0 NA 

M12 -1.361 23.820 22.357 96.998 1273.6 0.6 NA 

M13 -2.160 23.947 24.686 96.970 1280.5 0.4 NA 

M14 -1.859 24.144 22.471 96.894 1313.1 0.0 NA 
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Table S5: Comparison of stem biomass prediction by our best model and previously published 

generic pan-tropical biomass models using our dataset. 

Types Models 
Observed 

 (kg) 
Predicted  

(Kg) 
Bias 
(%) 

rRMSE 
(%) 

MAPE 
(%) 

Our best model M10 294.87 299.01 -1.38 27.16 18.72 

Generic models 

Chave et al. (2005) 294.87 473.32 -37.70 70.39 73.77 

Chave et al. (2014) 294.87 517.21 -42.99 86.71 70.45 

Djomo et al. (2016) 294.87 315.32 -6.49 26.87 42.75 

Tetemke et al. (2018) 294.87 207.54 42.08 84.86 26.34 
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Figure S1: The observed (the full circle) against predicted (the solid blue line) stem volume 

graphs for the evaluated models. The dashed line represents the 1:1 line (i.e., a perfect fit 

between the observed and predicted). 
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Figure S2: The observed stem biomass (the full circles) and predicted values (solid blue line) 

using the evaluated biomass models. The dashed line represents the 1:1 line (i.e., a perfect fit 

between observed and predicted). 
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Chapter III: Ensuring sustainable wood harvesting from Juniperus procera trees from the 

Chilimo Dry Afromontane Forest in Ethiopia. 
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1 Introduction 

Forests are known to contribute substantially to the supply of wood for industrial and 

nonindustrial uses (FAO, 2020a; WEST, 2014). Over 15% of Ethiopia’s total land area (~17.35 

million hectares) is covered by forests including plantations, woodlands, and natural forests 

(BEKELE; TESFAYE; MOHAMMED; ZEWDIE et al., 2015; FRANKS; HOU-JONES; 

FIKREYESUS; SINTAYEHU et al., 2017). The natural forests in Ethiopia are complex in 

structure and composition resulting from the diverse biophysical, social conditions, and 

disturbance history (TEKETAY; LEMENIH; BEKELE; YEMSHAW et al., 2010). Dry 

evergreen Afromontane forest is among the forest types widely dispersed in the highlands of 

Ethiopia (FRIIS; DEMISSEW; BREUGEL, 2010). Being the largest remnant forest in the 

country, Afromontane forests have ecological significance, including the provision of habitat 

for many endangered species and storage of significant amounts of carbon (BEKELE, 1994; 

GEBEYEHU; SOROMESSA; BEKELE; TEKETAY, 2019a; GIRMA; SOROMESSA; 

BEKELE, 2014). These forests are also endowed with various native timber tree species such 

as Juniperus procera, Podocarpus falcatus, Olea hochstetteri, among others (e.g. DE 

VLETTER, 1991; DESALEGN; TEKETAY; GEZAHGNE; ABEGAZ, 2012).  Nevertheless, 

there is a huge gap between the supply and demand for wood and wood products in Ethiopia 

(MEFCC 2015). This growing gap is met through unsustainable wood harvesting from the 

existing natural forests and plantation establishment. The country has also relied on importing 

various wood products from abroad. For example, on average the government spent over USD 

118 million annually from 1997 to 2017 to import various wood products (TOLERA, 2021).  

Selective logging is a polycyclic yield regulation system in which a portion of the 

growing stock above a certain dimension is harvested at short intervals (SEYDACK, 2012). 

Selective logging of commercially important tree species is sometimes practiced in the natural 

forests of Ethiopia. For example, Aningeria adolfi-friederici, Antiaris toxicaria, Cordia 

africana, Morus mesozygia, and Ekebergia capensis were harvested from the moist 

Afromontane forests in southwestern Ethiopia (ABEBE; HOLM, 2003a). Additionally, the two 

coniferous tree species Podocarpus falcatus and Juniperus procera were also selectively logged 

from various Dry Afromontane forests in Ethiopia (TESFAYE; TEKETAY; FETENE, 2002). 

The logging was performed by both state-owned and privately operated sawmills as well as 

plywood factories. Generally, the logging practice was unplanned and caused overexploitation 

of timber tree species and extensive forest degradation (ABEBE; HOLM, 2003a; RUSS, 1979). 

Consequently, the government formulated a harvesting ban on the existing natural forests. This 
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leads to unsustainable utilization through illegal logging from the natural forests in Ethiopia 

(AMEHA; NIELSEN; LARSEN, 2014). Hence, it is crucial to develop tools that can enhance 

the management of natural forests and ensure a continuous supply of wood, while protecting 

the natural forest resources in Ethiopia.  

Sustainable forest management planning requires species-specific and accurate 

information on the structure, standing volume, biomass, and growth rate of trees from a given 

forest (CANETTI; DE MATTOS; BRAZ; NETTO, 2017; DE MATTOS; SALIS; BRAZ; 

CRISPIM, 2010; GROENENDIJK; BONGERS; ZUIDEMA, 2017; SCHÖNGART, 2008). 

Such information is usually obtained either from repeated measurements in permanent sample 

plots (PSPs) or from growth ring analysis (BRIENEN; ZUIDEMA, 2006; CANETTI; BRAZ; 

DE MATTOS; BASSO, 2021; CONDIT; HUBBELL; FOSTER, 1993; ROSA; BARBOSA; 

JUNK; DA CUNHA et al., 2017). Repeated forest inventories are an efficient technique to 

measure tree growth and obtain a full picture of their growth dynamics. The growth rate, 

recruitment, and mortality of trees can all be measured using this technique. However, it is 

labor-intensive, expensive, requires periodic measurements usually every 5-10 years, and can 

be difficult to obtain annual growth rates and monitor the entire life cycle of the tree. 

Furthermore, monitoring large areas can be a challenge, particularly for certain species with 

wider distribution (CLARK; CLARK, 2001; INGA; DEL VALLE, 2017; KERSHAW JR; 

DUCEY; BEERS; HUSCH, 2016). Unfortunately, Ethiopia does not have a program for 

permanent sample plots, which could help to address these issues. However, tree ring analysis 

is a fast and reliable tool to obtain the lifetime growth rate and the establishment age of trees 

(CANETTI; BRAZ; DE MATTOS; BASSO, 2021; GROENENDIJK; BONGERS; 

ZUIDEMA, 2017; ROSA; BARBOSA; JUNK; DA CUNHA et al., 2017). Such information 

can be used to determine the timber stock in a forest, assess the sustainability of timber 

harvesting for several tropical timber trees, and develop a species-specific management plan 

(LIGOT; FAYOLLE; GOURLET-FLEURY; DAINOU et al., 2019; LÓPEZ; VILLALBA; 

BRAVO, 2013; ROZENDAAL; BRIENEN; SOLIZ-GAMBOA; ZUIDEMA, 2010). 

J. procera is one of the most important tree species in African montane forests, found 

in countries such as  Sudan, Eritrea, Ethiopia, DR Congo, Malawi, and Zimbabwe as well as 

Saudi Arabia and Yemen (GARDEN, 2022; POHJONEN; PUKKALA, 1992). This species has 

significant economic and ecological importance for these nations. The wood is durable and 

termite resistant (POHJONEN, 1991), and is one of the most commercially exploited timber 

tree species in Ethiopia (see BEKELE, 1993; RUSS, 1979; TEKETAY, 1992). In the past, 

various studies focused on the climate growth relationship (COURALET; SASS-KLAASSEN; 
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STERCK; BEKELE et al., 2005), seed behavior and germination rate (MAMO; MIHRETU; 

FEKADU; TIGABU et al., 2006; MAMO; NIGUSIE; TIGABU; TEKETAY et al., 2011), and 

genetic variability among different populations of this species (SERTSE; GAILING; 

ELIADES; FINKELDEY, 2011). However, the basic information for calculating the timber 

yields including the standing stock, growth rate, minimum cutting diameter, cutting cycle, and 

other essential information is lacking and the available ones are outdated (TEKETAY; 

LEMENIH; BEKELE; YEMSHAW et al., 2010). The lack of basic information constrains the 

development of forest management plan for sustainable wood harvesting from this tree species 

as well as the natural forests in Ethiopia. 

Various studies reported modelling the growth of trees enables to explore the rotation 

age, minimum cutting diameter, age of maximum annual increment, age of thinning, and the 

calculation of annual allowable cut in sustainable management systems (BRIENEN; 

ZUIDEMA, 2006; CANETTI; DE MATTOS; BRAZ; NETTO, 2017; GROENENDIJK; 

BONGERS; ZUIDEMA, 2017). Therefore, the objectives of this study were to (1) determine 

the population structure and diameter growth rate of the J. procera tree; (2) develop a diameter 

growth model and evaluate the ideal minimum logging diameter and cutting cycle for this tree 

species; (3) provide the potential harvestable volume of wood through simulation by combining 

different minimum logging diameters and cutting cycles from Chilimo forest managed under 

participatory forest management scheme. This is hoped to enable forest managers and 

policymakers to formulate species-specific management regimes and ensure sustainable timber 

harvesting from the existing Dry Afromontane Forest in Ethiopia. 

2 Materials And Methods 

2.1. Study site description 

This study was conducted in the Chilimo forest, located 97 km west of Addis Ababa in 

central Ethiopia (Figure 1). It is geographically located from 38°05' to 38°15' E and 9°00' to 

10°10' N, at an altitudinal range of 1,700-3,200 m. The area experiences a unimodal pattern of 

rainfall distribution from May to September, with July having the highest peak. The average 

annual temperature is between 15 and 20°C, and its average annual precipitation ranges between 

1000 and 1264 mm (Tesfaye et al., 2018). The major soil types around the study areas are 

Vertisols, Luvisols, and Cambisols (Soromessa and Kelbessa 2014). The forest is among the 

remnant dry Afromontane forests that once covered Ethiopia’s central plateau. Chilimo forest 

currently covers a total area of 4,500 ha and is jointly managed by twelve Forest User Groups 
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(FUGs) and Oromiya Wildlife and Forest Enterprise (OFWE) under the participatory forest 

management scheme (AMEHA; NIELSEN; LARSEN, 2014; TESFAYE, MEHARI A; 

GARDI, OLIVER; BEKELE, TESFAYE; BLASER, JÜRGEN, 2019). In this arrangement, the 

regional government and local communities agreed to jointly protect, manage, and sustainably 

utilize the forest resources. Members of the forest user groups are allowed to harvest wood for 

the maintenance of public schools and houses (for poor and aged people), firewood and 

construction wood from dead and dying trees for their subsistence use, and livestock grazing 

(AMEHA; LARSEN; LEMENIH, 2014). Commercial harvesting is not allowed from the 

natural forest but from the plantation forests established surrounding the natural forest. 

 

Figure 1: Map of the study area overlaid with the distribution map of dry Afromontane forests 

following FRIIS; DEMISSEW e BREUGEL (2010). 

 

2.2. Forest Inventory  

A forest inventory was conducted in 2018 in the Chilimo forest. A systematic random 

sampling technique was employed to collect the vegetation data. A total of 165 sample plots 

(20 m × 20 m) were established along transect lines. The first transect was aligned parallel to 

the edge of the forest (20 m) and others were laid out at 500 m intervals. The first plot was 

located randomly, and the subsequent plots were established at 300 m intervals along the 
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transect lines. In each sample plot, the diameter at breast height (dbh) and total height (h) of all 

trees with dbh ≥ 2.0 cm were measured using a diameter tape and Vertex IV ultrasonic 

hypsometer (Haglöf Sweden AB, Långsele, Sweden). The local names of all trees were 

recorded and identified to the species level in the field following the Flora of Ethiopia and 

Eritrea (EDWARDS; TADESSE; DEMISSEW; HEDBERG, 2000; EDWARDS; TADESSE; 

HEDBERG, 1995; HEDBERG; EDWARDS; NEMOMISSA, 2003; HEDBERG; FRIIS; 

EDWARDS, 2004; HEDBERG; HEDBERG; EDWARDS, 1989). For those species difficult to 

identify in the field, their specimens were collected, pressed, and identified at the National 

Herbarium, Addis Ababa University.  

All trees with a diameter ≥ 2 cm were considered to describe the structure of the forest. 

The density (No ha-1), basal area (m2 ha-1), frequency (number of plots with species presence), 

and Importance Value Index (IVI) for each species were calculated (Table S1). The density was 

calculated by converting the total number of individuals of each species per plot to equivalent 

numbers per hectare. IVI is the sum of the relative density, relative dominance, and relative 

frequency values (KENT; COKER, 1992), where relative density (%) is the density of each 

species as a percentage of the total density of all species, relative frequency (%) is the frequency 

of each species as the percentage of the total frequency of all species, and the relative dominance 

(%) is the basal area of each species as the percentage of the total basal area of all species. The 

proportional analysis of the IVI allowed us to assess the relative contribution of each species in 

the study area and the most important species were those having the highest values 

(GONÇALVES; REVERMANN; GOMES; AIDAR et al., 2017).  

2.3. Target tree species 

Among the species enumerated, J. procera was selected for further studies based on the 

basal area and diameter distribution information generated from the inventory data (Table S1). 

It is one of the tree species commercially exploited for timber from dry Afromontane forests 

(AMENTE, 2006b). J. procera is an evergreen tree that attains over 40 m in height and 3 m in 

diameter (NEGASH, 1995). The species grows within the altitudinal range between 1,700 - 

3,300 m above sea level (STERCK; COURALET; NANGENDO; WASSIE et al., 2010; 

TIGABU; FJELLSTRÖM; ODÉN; TEKETAY, 2007).  

The average wood density of this species is 0.60 ± 0.07 g cm-3 (MOKRIA; 

GEBREKIRSTOS; AYNEKULU; BRÄUNING, 2015). The wood can be used for the 

manufacturing of lead-pencil, construction, and lining of buildings, as well as for a variety of 

outdoor works owing to its fine texture, straight grain, resistance to termite attack, and 
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workability (DESALEGN; TEKETAY; GEZAHGNE; ABEGAZ, 2012; NEGASH, 1995). 

Previous dendrochronological studies showed the existence of annual growth rings which are 

defined by the presence of large, round, and thin-walled tracheid in the lighter earlywood and 

small, flattened, and thick-walled tracheid in the darker latewood (MOKRIA; 

GEBREKIRSTOS; AYNEKULU; BRÄUNING, 2015; WILS; ROBERTSON; ESHETU; 

SASS-KLAASSEN et al., 2009). 
The J. procera population structure (the number of individuals per diameter class) was 

analyzed by constructing frequency distribution histograms using 10 cm diameter classes. First, 

we plotted the cumulative number of individuals against the diameter size to understand the 

diameter size class with management potential as well as to determine the carrying capacity of 

the forest (BRAZ; DE MATTOS; OLIVEIRA; BASSO, 2014; GOTELLI, 2008; 

WHITTAKER, 1970). In this way, we assume that the current structure is the same trajectory 

as the past (GOTELLI, 2008), and then represent the number limit of trees of that species in the 

stand with the stabilization of the curve (TIETENBERG; LEWIS, 2018). We also calculated 

the time of passage from one diameter size class to the other by estimating the duration of the 

growth phases (SOUZA; ARAÚJO; CAMPOS; NETO, 1993). 

2.4. Disc sample collection for growth ring analysis 

Tree ring analysis is a fast and reliable tool to obtain the lifetime growth rates of trees, 

determine the age, enable the understanding of the forest dynamics, and help to develop species-

specific management criteria (CANETTI; DE MATTOS; BRAZ; NETTO, 2017; DE 

MATTOS; AGUSTINI; ALVAREZ, 2010; DE MIRANDA; HIGUCHI; TRUMBORE; 

LATORRACA et al., 2018; GROENENDIJK; BONGERS; ZUIDEMA, 2017; ROSA; 

BARBOSA; JUNK; DA CUNHA et al., 2017; SCHÖNGART, 2008). This approach involves 

harvesting or coring trees to collect samples. A total of 12 stem disc samples were collected at 

1.3 m height across the range of diameter sizes (dbh ≥ 40 cm) among the fallen tree species due 

to the asphalt road construction that passes through the Chilimo forest.  

The collected disc samples were sanded with progressively finer sandpaper (from 80 to 

400 grit size). Before measurement, four radii were drawn, and the ring boundaries were marked 

with a pencil. The ring widths were measured to 0.01 mm using LEICA MS 6 microscope 

coupled with a LINTAB digital measuring table associated with TSAP-Win software (RINN, 

2003). The accuracy of visual cross-dating and measurement errors were further checked using 

the COFECHA program (HOLMES, 1983). Following the successful cross-dating, diameter 

growth curves were created by accumulating the ring-width increments for each tree and used 
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to describe the diameter growth pattern (e.g., CANETTI; BRAZ; DE MATTOS; BASSO, 

2021). Additionally, the mean annual diameter increments and passage time for each diameter 

size class were calculated and presented using a boxplot.  

2.5. Bark sample collection for over-bark diameter reconstruction 

Sample trees (n = 202, diameter range 2.0 - 125.5 cm) were selected for a bark sample 

collection from the Chilimo forest. The trees were systematically sampled to cover the range of 

diameters within a forest. Overall, two bark samples were collected at 1.3 m above ground level 

by using a machete (we removed a small piece of bark about 10 cm in length). The bark 

thickness was directly measured in the field using a digital Vernier caliper.  

The mean bark thickness (b) was calculated from two bark sample measurements and 

converted into cm. The calculated mean bark thickness was used to determine the under-bark 

diameter (Dub) of the respective tree from the over-bark diameter (Dob) measurements. The 

under-bark diameter was calculated by using the following formula: 

Dub = Dob - b 

We fitted the power function bark thickness prediction equation (equation 1) by 

considering the relation between the over-bark diameter (Dob) and under-bark diameter (Dub) 

was established. The relation between the over-bark diameter (Dob) and under-bark diameter 

(Dub) was calculated by using the following power function.  

𝐷𝑜𝑏 =  𝛽0  ×  𝐷𝑢𝑏(1 + 𝛽1) + 𝜀, where β0 = 1.16 and β1 = -0.03                                  Equation 1 

Where Dob is the over-bark diameter (cm), Dub is the under-bark diameter (cm). By using 

the mean bark thickness and under-bark diameter, we calculated the over-bark diameter (dbh) 

of a tree at any age. This conversion was required since the volume equation we used to 

calculate the stem volume of a tree requires the over-bark diameter (Dob) as the input variable.  

2.6. Diameter growth modeling 

To describe the age-diameter relationship of the tree species, we adjusted six sigmoid 

growth models (Table 1) that are widely used in growth modeling (BURKHART; TOMÉ, 

2012). The purpose of fitting a growth model is to represent the biological development of the 

studied species including its juvenile, adult, and senescence phases. The models were fitted by 

the nls function in the nlstools package in R Software (BATY; RITZ; CHARLES; BRUTSCHE 

et al., 2015). The best-fitted model was selected based on the Pearson correlation coefficient, 
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bias, and root means square of error (RMSE) values obtained from the Leave-One-Out cross-

validation (LOOCV) technique, and graphical analysis of the residual distributions. The cross-

validation technique was repeated 200 times, and statistics and errors of the model were 

averaged over 200 realizations following the procedures in HUY; POUDEL e TEMESGEN 

(2016). Bias (%) =  1R ∑ 100nRr=1 ∑ yi−Ŷiyini=1                                                                                Equation 2                       

RMSE (cm) = 1R ∑ √1n ∑ (yi − Ŷi)2𝑛𝑖=1𝑅𝑅=1                                                                    Equation 3  

𝑟yŷ = ∑(𝑥𝑖−𝑥̅) (𝑦𝑖−ȳ)√∑(𝑥𝑖−𝑥̅)2 ∑(𝑦𝑖−ȳ)2                                                                                                Equation 4 

 
We used the height prediction model developed for J. procera tree in chapter one 

(Equation 6) and determined the total height for the reconstructed diameter at a specific age. 

The wood volume of trees at a given age was estimated using a volume equation developed for 

J. procera (Equation 5) from the Chilimo forest. From the calculated volume, we derived the 

current annual volume increment (CAIv) and mean annual volume increment (MAIv) using 

Equations 7 and 8 following the procedure in SCHÖNGART (2008). 

V = 0.0004246 (dbh)1.2824861(ht)1.038178                                                                                                         Equation 5 

ht = 1.3 + 35.831 dbh / (31.390 + dbh)                                                                     Equation 6  

MAIv = CGv(t) /t                                                                                                        Equation 7 

CAIv = CGv (t + 1) – CGv(t)                                                                                          Equation 8 

where V is the stem volume of the tree, dbh is the diameter at 1.3 m above the ground 

level (cm), ht is the total height (m), MAIv is the mean annual volume increment (m3), CAIv is 

the current annual volume increment (m3), CGvt is the cumulative volume increment at 

different years (cm) and t is the age (years).  

Table 1: Growth functions tested to determine the diameter growth pattern of the J. procera 

tree.  

No Equations Functional form 

1. Gompertz Y = 𝛽0𝑒𝑥𝑝(−𝑒𝑥𝑝(𝛽1 − 𝛽2𝐴𝑔𝑒)) 

2. Logistics Y = 𝛽0(1 + 𝛽1𝑒𝑥𝑝(−𝛽2𝐴𝑔𝑒)) 
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3. Johnson-Schumacher Y = 𝛽0𝑒𝑥𝑝(−𝛽1/(𝐴𝑔𝑒 + 𝛽2)) 

4. Monomolecular Y = 𝛽0(1 − 𝛽1𝑒𝑥𝑝(−𝛽2𝐴𝑔𝑒)) 

5. Chapman-Richards Y = 𝛽0(1 − 𝑒𝑥𝑝(−𝛽1𝐴𝑔𝑒))𝛽2 

6. Schumacher Y = 𝛽0𝑒𝑥𝑝(−(𝛽1 /𝐴𝑔𝑒)) 

7. Lundqvist-Korf 𝑌 =  𝛽0𝑒𝑥𝑝(−𝛽1 ∗ 𝐴𝑔𝑒−𝛽2) 

where Y is the diameter at 1.30 m from the ground; “𝑡 “ is the time required (age); “𝛽0, 𝛽1, 𝛽2 

and 𝛽3” are model parameters (BURKHART; TOMÉ, 2012). 

The age that provides the maximum average annual volume increments was defined at 

the point where the MAI and CAI curves met (BETTINGER; BOSTON; SIRY; GREBNER, 

2016). The ideal minimum logging diameter (MLD) was defined as the diameter at the 

maximum CAI which can be derived from the age diameter relationship curve of the tree 

species. The cutting cycle which represents the mean passage time through the 10 cm diameter 

class until reaching the MLD was acquired by Equation 9: 𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒𝑠 =  𝐴𝑔𝑒(𝑀𝐿𝐷)(𝑀𝐿𝐷∗0.1)                                                                                       Equation 9 

2.7. The harvestable volume of wood simulation 

The harvestable volume of wood potential from the J. procera tree population was 

simulated by considering different scenarios. Each scenario was defined by a combination of 

four Minimum logging diameters (30, 40, 50, and 60 cm) and five cutting cycles (15, 20, 25, 

30, and 35 years). We also used the number of trees and volume in each diameter size class. 

The simulation was performed by using the diameter size class projection method using the 

mathematical function (Equation 10) proposed by (ALDER, 1995) 

, 1 ,k t k t K k k kN N I O M H+ = + − − −                                                                                 Equation 10 

where Nk, t+1 is the number of trees in diameter size class k in the period t+1, Nk, t is the 

number of trees in class k at the period t, Ik is the ingrowth into the class k during the period, Ok 

is the outgrowth from class k to the subsequent classes, Mk is the mortality rate in class k, and 

Hk is the harvested tree during the period.  

We built the matrix by simulating for 5 years (t) intervals, starting with a 15 cm dbh 

center class, until the steady state (structure equilibrium) was attained (BUONGIORNO; 

GILLESS, 2002). We used the stem volume of wood from the J. procera tree above the MLD 
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to define the harvestable volume of wood (Hk). The initial population structure (Nk,t) was 

obtained from the recent inventory in the Chilimo forest. The average annual diameter growth 

rate by diameter class was obtained from the growth ring analysis. The number of trees passing 

to the next classes (Ok) was calculated from the passage time between diameter classes using 

Equation 11. 

.
k

t i
o

w
=                                                                                                                       Equation 11  

where Ok is the number of trees migrating from class k to the subsequent classes, i is the 

average increment of the diameter size class k, w is the interval between diameter size classes 

(10 cm), and t is the period considered.  

 

The number of individuals in the first diameter size class was used as recruitment (Ik). 

Generally, long observation data from permanent sample plots are required to get reliable 

estimates of mortality rate. However, permanent sample plots are scanty in Ethiopia. Hence, we 

used an alternative approach suggested by LUNDQVIST (2017) to estimate the average annual 

mortality rate (Mi) in each diameter size class (Equation 12).  
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                                                                                    Equation 12 

where (Mi) is the annual mortality rate in the diameter class (i) in percentage, (Ni) is the 

number of trees in the diameter class (i), (Ni+1) is the number of trees in the subsequent diameter 

class, (Ii) and (Ii+1) are the mean annual diameter increment of class i, and the subsequent class 

in cm, (ti) and (ti+1) are the passage time from the diameter class (i) and (i+1) to the subsequent 

classes. The steady-state was determined by running the matrix until the volume production is 

relatively stabilized. The final harvesting simulation output of each scenario was regarded as 

the maximum harvestable volume of wood potential provided by the J. procera tree population 

from the Chilimo forest. 
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3 Results 

3.1. Woody species composition  

A total of 37 woody plant species in 30 families were recorded during this study (Table 

S1). The most species-rich families were Rosaceae (represented by three species), followed by 

Rhamnacea, Oleaceae, Loganiaceae, Flacourtiaceae, and Celastraceae each represented by 

two species. The remaining families were represented by one species. The top ten abundant tree 

species were J. procera, Olea europaea ssp. cuspidata, Olinia rochetiana, Maytenus gracilipes, 

Podocarpus falcatus, Scolopia theifolia, Rhus glutinosa, Osyris quadripartita, Allophylus 

abyssinicus, and Dovyalis abyssinica. The mean stem density of all tree species (dbh ≥ 2 cm) 

was 925 stems ha-1, while the total basal area was 26 m2 ha-1. The lists of all tree species 

registered from the Chilimo forest were presented in Table S1. 

3.2. Density and diameter size distribution of J. procera  

The mean stem density of J. procera trees (dbh ≥ 2 cm) was 183 stems ha-1, while the 

total basal area was 12.1 m2 ha-1, and the standing volume of wood was 98.9 m3 ha-1.  Overall, 

trees with dbh ≥ 40 cm contributed 19.3% of the mean density, 72.1% of the total basal area, 

and 65.4% of the total standing volume of wood. The maximum diameter of the trees was 121.2 

cm while the tallest tree was 50.2 m in the forest. The population of J. procera showed an 

inverted J-shape diameter distribution pattern characterized by a higher number of individuals 

in the lower diameter classes (Dbh ≤ 20 cm) and a progressively declining number of trees with 

increasing diameter sizes (Figure 2a). The cumulative number of trees (Figure 2b) tends to 

stabilize after the 65 cm diameter size which shows the maximum number of individuals of the 

species the stand can support (stand carrying capacity). The population structure of the top ten 

tree species was presented in Figure S3. 
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Figure 2: Population structure (a), the cumulative number of trees (b), and the standing volume 

of wood (c) by diameter size class for the J. procera tree population from the Chilimo forest.  

3.3. Diameter growth rates and passage time by dbh classes 

The mean annual diameter growth ranges between 0.50 cm year-1 and 0.65 cm year-1 

with an overall mean of 0.59 ± 0.24 cm year-1. A Kruskal-Wallis tests also showed that there 

was a statistically significant difference in diameter growth rates between the different diameter 

size classes (Chi-square = 46.53, p-value < 0.05). The trees exhibited the lowest diameter 

growth rate in the lower class (0.50 cm year-1) and the growth rate progressively increased with 

increasing diameter size and reached 0.65 cm year-1 at the highest diameter size (Figure 3a). 

The average time required to move from one diameter class to the next higher-size class ranges 

between 16 and 19 years.  
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Figure 3: The observed average diameter growth rates (a) and passage time (b) by diameter size 

classes. The boxplots show the median values (solid horizontal line), 50th percentile values (box 

outline), and 90th percentile values (whiskers). The blue and black full circles represent the 

mean and individual observations.  

3.4. Modeling the cumulative diameter growth  

The estimated parameters and the goodness-of-fit statistics of the fitted diameter growth 

models are presented in Table 3. The Johnson-Schumacher model better fitted with the diameter 

growth data as shown by the fit statistics values (Table 3) and graphical analysis (Figure 4). 

This model had the lowest RMSE and Bias values. All the parameter estimates of the tested 

models were significantly different from zero (p < 0.001). The scatter plots observed against 

predicted diameter growth for the evaluated models are presented in (Figure S1). Visual 

comparison of the evaluated models revealed that the Johnson-Schumacher model provides the 



134 
 

 

closest prediction to the observed diameter growth than the remaining models. The residual plot 

shows that the residuals of Johnson-Schumacher were randomly scattered around zero lines for 

all fitted values except for the smaller diameter sizes (Figure 5). 

Table 3: Parameter estimates and fits statistics for diameter growth estimation models using the 

Leave-One-Out Cross-Validation (LOOCV) technique. 

No Models β0 β1 β2 ryŷ 
RMSE 
(cm) 

Bias 
(%) 

P-value 

1. Gompertz 49.371 3.418 0.037 0.9321 5.12 -0.08 < 0.001 

2. Logistics 43.987 13.104 0.065 0.9291 5.22 -0.17 < 0.001 

3. Johnson-Schumacher 94.469 76.626 14.384 0.9330 5.08 -0.03 < 0.001 

4. Monomolecular 107.600 1.023 0.0065 0.9319 5.13 -0.03 < 0.001 

5. Chapman-Richards 62.254 0.019 1.540 0.9327 5.10 0.00 < 0.001 

6. Schumacher 68.060 41.306  0.9285 4.88 0.42 < 0.001 

7. Lundqvist-Korf 294.115 10.712 0.390 0.9324 5.08 -0.03 < 0.001 
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Figure 4: Cumulative diameter growth curves (black lines) and the fitted models (red line). 

The 12 lines represent the cumulative diameter growth of individual J. procera trees. 
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Figure 5: Residuals graph for the evaluated diameter growth models 
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J. procera trees attained the maximum CAI in volume at 50 years of age and reached 

30 cm in diameter. This diameter (30 cm) is considered the minimum logging diameter (MLD) 

for the J. procera tree from the Chilimo forest. On the other hand, trees attained the maximum 

average volume increment (MAI) at 90 years of age and the trees reached 50 cm in diameter 

(Figure 6). The estimated cutting cycle until the trees reach the MLD was 17 years.  

Figure 6: Current and mean annual increment curves in volume estimates (a) and the cumulative 

diameter growth curve (b) for J. procera tree. 
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3.5. The potential harvestable volume of wood  

The simulation analysis considering the 30 cm MLD (the diameter at the maximum CAI 

in volume) consistently showed the largest harvestable volume of wood and the amount 

decreased in the subsequent harvests and remained stable after the fifth harvesting entry (Figure 

7). On the contrary, the 40, 50, and 60 cm MLD (the diameter at the maximum MAI in volume) 

consistently showed the lowest initially harvested volume of wood and the amount increased in 

the second harvest and stabilized after the fifth harvesting entry. 

 

Figure 7: Simulation of the long-term harvestable volume of wood (m3 ha-1) for the evaluated 

minimum logging diameters and cutting cycles. The light blue vertical line indicates the 

harvesting entry after which the harvesting was stabilized. 

The projected harvestable volume of wood at the steady state was consistently reduced 

with increasing minimum logging diameters, but this value increased with increasing cutting 

cycle lengths (Figures 8a & c). On the contrary, the volume increment reduced with increasing 

cutting cycle lengths and minimum logging diameters (Figures 8b & d). Generally, the largest 
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harvestable volume of wood was obtained by considering the 30 cm MLD combined with 35 

years cutting cycle, whereas the lowest harvestable volume of wood was obtained by 

considering the 60 cm MLD and 15 years cutting cycle. On the other hand, the highest volume 

increment was observed from 40 cm MLD and 15 years cutting cycle, while the lowest volume 

increment was obtained by considering the 60 cm MLD and 35 years of cutting cycles (Figure 

8b).  

 

Figure 8: The projected harvestable volume of wood (a and c) and volume increment (b and d) 

against the minimum logging diameters (MLD) and cutting cycles. 

4 Discussions 

The observed mean density of J. procera trees in this study (183 stems ha-1) is higher 

than the findings from the Adelle Forest (86 stems ha-1) in Bale Mountains (YOUNG; ROMME; 

EVANGELISTA; MENGISTU et al., 2017), Wofwasha forest (92.6 stems ha-1) in central 

Ethiopia (FISAHA; HUNDERA; DALLE, 2013), and the dense rainforest (42.04 stems ha-1) in 

south-western Ethiopia (ABEBE; HOLM, 2003a). This suggests that the Chilimo forest 

presents a higher stock and has larger number of stems. The differences in anthropogenic 

disturbance levels and forest management practices are probably responsible for the variation 
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in stem density. The total basal area (12.1 m2 ha-1) was lower than the findings from the 

Wofwasha forest (FISAHA; HUNDERA; DALLE, 2013), the Adelle Forest (YOUNG; 

ROMME; EVANGELISTA; MENGISTU et al., 2017), and the Adaba-Dodola forest 

(HUNDERA; BEKELE; KELBESSA, 2007). This value is, however, greater than the findings 

from the Arero forest (SHIFERAW; LIMENIH; GOLE, 2019) in southern Ethiopia. The 

harvesting of larger-diameter trees from the Chilimo forest in the past could explain the 

relatively lower mean basal area (EFAP, 1994; HASSEN, 2013). Previous studies reported that 

anthropogenic disturbances i.e. free grazing, timber extraction, and mining cause changes in 

species composition, tree density, and basal area (KIKOTI; MLIGO, 2015). A relatively lower 

amount of basal area and density of trees have been previously reported from other dry 

Afromontane forests which experienced anthropogenic disturbances in central Ethiopia 

(BEKELE, 1993; TILAHUN; SOROMESSA; KELBESSA; DIBABA, 2011). 

In the Chilimo forest, the total standing volume of wood derived from J. procera trees 

(dbh ≥ 2 cm) was 98.9 m3 ha-1. Out of this, trees with a dbh ≥ 40 cm constituted 65 % of the 

total standing volume of wood, highlighting the potential for timber harvesting. This is partly 

related to the recovery of the forest from past disturbances due to the protection by the local 

communities. Chilimo forest is among the natural forests managed by local forest user groups 

organized as cooperatives under participatory forest management schemes (Mohammed & 

Inoue, 2014). In this arrangement, the local government and communities agreed to jointly 

protect, manage, and sustainably utilize the forest resources. Various studies presented that this 

arrangement helps to enhance tree regeneration, accumulate biomass stock, improve 

livelihoods, and alleviate poverty (AMENTE, 2006a; GOBEZE; BEKELE; LEMENIH; 

KASSA, 2009; SIRAJ, 2019).  

J. procera exhibited an inverted J-shape diameter distribution pattern in the Chilimo 

forest(Figure 2a). This pattern indicates a healthy regeneration process and continuous 

recruitment of new individuals in the smaller diameter classes, followed by gradual reduction 

in numbers as the trees mature within the forest. According to (YOUNG; ROMME; 

EVANGELISTA; MENGISTU et al., 2017), a tree population with such kind of diameter 

distribution pattern could be considered a stable population with low conservation concern. The 

reason for the good regeneration might be the formation of additional microsites created due to 

tree harvesting in the past, facilitating the availability of light, nutrients, and moisture to the 

remaining trees. On the other hand, the population size of J. procera trees stabilized after the 

65 cm diameter size class (Figure 2b). This shows that the population has reached its upper 

limit of growth, commonly known as carrying capacity. Beyond this point, the population is 
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likely to experience a significant decline due to the higher competition for scarce resources 

(DEL MONTE‐LUNA; BROOK; ZETINA‐REJÓN; CRUZ‐ESCALONA, 2004). This 

carrying capacity implies a diameter limit that needs to be considered for planning appropriate 

management intervention and ensuring a sustainable and productive forest structure. 

Timber harvesting is legally prohibited from the natural forests in Ethiopia. This is 

primarily due to the absence of tools to regulate timber harvestings, such as diameter growth 

rate, minimum cutting diameter, and cutting cycles for the timber tree species. Additionally, 

lessons from previous conventional logging practices in Ethiopia have led to the depletion of 

the timber stock and severe degradation of the remnant forest (ABEBE; HOLM, 2003a). In this 

study, we provided the required information that enables policymakers to make informed 

decisions regarding the harvesting of wood from J. procera tree species. The average annual 

diameter growth rate varies between 0.50 cm year-1 and 0.65 cm year-1 with an overall mean of 

0.59 cm year-1. These values are within the range of the growth rate reported from commercially 

harvested timber tree species from a wet tropical forest in Cameron (GROENENDIJK; 

BONGERS; ZUIDEMA, 2017), Bolivian Cerrado (LÓPEZ; VILLALBA; BRAVO, 2013), 

Sinop micro-region in the Brazilian Amazon forest (CANETTI; BRAZ; DE MATTOS; 

BASSO, 2021), Bolivian Amazon forest (BRIENEN; ZUIDEMA, 2006), Semi deciduous 

forest in Cameron (WORBES; STASCHEL; ROLOFF; JUNK, 2003), Central African forest 

(LIGOT; FAYOLLE; GOURLET-FLEURY; DAINOU et al., 2019), from different Eco-

regions in Bolivia (DAUBER; FREDERICKSEN; PEÑA, 2005). However, our diameter 

growth values are higher than the estimates for the same tree species from various dry 

Afromontane forests in Ethiopia. For instance, COURALET; SASS-KLAASSEN; STERCK; 

BEKELE et al. (2005) reported a mean annual growth rate of 0.40 cm year-1 and 0.26 cm year-

1 from the Adaba-Dodola and Menagesha suba Dry Afromontane forests. Similarly, SIYUM; 

AYOADE; ONILUDE e FEYISSA (2019b) reported a mean diameter growth rate of 0.23 cm 

year-1 from Hugumburda and 0.18 cm year-1 from Desa’a forest in Northern Ethiopia. This 

variation might be related to the differences in the local environmental factors including 

climate, topography, soil fertility, moisture, and inherent genetic differences (e.g. KARYATI; 

IPOR; JUSOH; WASLI, 2017; KERSHAW JR; DUCEY; BEERS; HUSCH, 2016). Generally, 

the calculated average diameter growth rate by diameter classes provides the potential range of 

growth rates for the species.  

Individual J. procera trees showed the maximum CAI in volume at the age of 50 years 

and trees attained 30 cm in diameter (Figure 6). This shows that trees attain the highest growth 

rate at this age and the growth declines afterward. Maintaining trees above 30 cm diameter in 
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the forest is considered a waste of space and income from a production forestry point of view 

since the trees already passed their point of maximum wood production (Figure 6). Similarly, 

the tree exhibited the maximum MAI in volume at 90 years (the age that provides the maximum 

volume production) and the trees attained 50 cm in diameter. This is consistent with the findings 

by Pohjonen and Pukkala (1992) who reported the maximum CAI in volume between 35 and 

40 years and the maximum MAI in volume between 50 and 60 years for the same tree species 

from the Menagesha Suba forest in Central Ethiopia.  

The 30 cm MLD (the diameter at maximum CAI) and 35 years cutting cycle provided 

the largest harvestable volume of wood (48 m3 ha-1) and the best scenario from the wood 

production point of view (Table S2). However, the cutting cycle length is large, and difficult to 

meet the growing wood demand gap as well as the local community interest. Alternatively, the 

30 cm MLD combined with the remaining cutting cycles also provided a large amount of 

harvestable wood and volume increments (Table S2). Nevertheless, this scenario entails 

harvesting a large proportion (11-22 %) of the current standing trees, including those with the 

most productive diameter size before they can reach their reproductive stages. This will impede 

seed production and the regeneration process. According to COURALET; SASS-KLAASSEN; 

STERCK; BEKELE et al. (2005), J. procera tree starts seed production when the diameter 

reaches around 25 cm. Therefore, it is crucial to strictly protect these diameter size classes in 

the forest while ensuring sustainable wood harvesting practices. 

The 40 cm MLD and a 15-year cutting cycle resulted in the optimum harvestable volume 

of wood (22 m3 ha-1) and volume increment (1.4 m3 ha-1 year-1). Additionally, this scenario 

allows for the harvesting of small proportion (9 %) of the standing trees while maintaining a 

larger proportion (91 %) of the existing standing trees in the forest. This scenario will enable 

wood harvesting in a short period (every 15 years) and lead to meeting the local community 

interest as well as the national wood demand gap. The timber volume increment presented here 

is higher than the findings from selected timber trees from the Brazilian Amazon Forest (BRAZ; 

CANETT; DE MATTOS; BASSO et al., 2018; CANETTI; BRAZ; DE MATTOS; BASSO, 

2021), from the Bolivian Amazon Forest (BRIENEN; ZUIDEMA, 2006). However, it is within 

the range of the average volume increment reported from selectively logged tropical forests 

(Putz et al., 2012). The initially harvested volume recovery rate was comparable with the 35% 

recovery rate reported by (PUTZ; ZUIDEMA; SYNNOTT; PEÑA‐CLAROS et al., 2012) for 

tropical forests, 21-36 % recovery rate from four species in Cameroon (GROENENDIJK; 

BONGERS; ZUIDEMA, 2017), 18- 49 % recovery rate from three canopy tree species from 

the semi-deciduous moist forest in Bolivia (ROZENDAAL; BRIENEN; SOLIZ-GAMBOA; 
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ZUIDEMA, 2010), and 18-61 % recovery rate from four timber tree species from Bolivian 

Amazon Forest (BRIENEN; ZUIDEMA; MANAGEMENT, 2006). Our estimates are slightly 

higher than the volume recovery rate reported from the Bolivian Amazon Forest (DAUBER; 

FREDERICKSEN; PEÑA; MANAGEMENT, 2005). The higher recovery rate can be 

attributed to the high densities per hectare and the relatively higher average diameter growth 

rates (0.59 cm year-1) of J. procera trees compared to the Amazon species.  

The 50 cm MLD (diameter at the maximum MAI) and 60 cm MLD relatively provided 

the lowest harvestable volume of wood and volume increments (Table S2). Only 3 - 5 percent 

of the total number of J. procera trees will be harvested and the largest proportion (95 - 97 

percent) of J. procera trees will be maintained in the forest (Table S2). These scenarios are the 

least important combination from the wood production point of view and satisfy the local 

community interest. Trees require 90 years to reach the MLD and provide the lowest amount 

of harvestable volume of wood. The low diameter growth rate (≥ 60 cm dbh) and few number 

of trees in the preceding classes may be the cause of the low timber volume recovery. At this 

point, the trees have already passed their point of maximum wood production and start to show 

declining growth (senescence phase).  

The initially harvested volume of wood was not completely recovered for the applied 

MLD and cutting cycles (Table S1). Generally, the recovery rate (%) increased with increasing 

the length of cutting cycles for all minimum logging diameters. This is consistent with the 

findings from the Amazon forest (BRAZ; DE MATTOS; THAINES; DE MADRON et al., 

2015), a semi-deciduous moist forest in the Central African Republic (LIGOT; GOURLET-

FLEURY; DAINOU; GILLET et al., 2022), and the East African tropical forest (BONNELL; 

REYNA-HURTADO; CHAPMAN, 2011). However, various studies (BRIENEN; ZUIDEMA; 

MANAGEMENT, 2006; PUTZ; ZUIDEMA; SYNNOTT; PEÑA‐CLAROS et al., 2012) 

associated the non-recovery of the initially harvested volume of wood in the subsequent cycles 

with unsustainable wood harvesting. However, the first harvesting contains some old-aged trees 

that have been present in the forest for many decades or centuries, thus it would not be 

reasonable to assume a total recovery of the volume of wood that was initially cut in the 

succeeding short cycles (BRAZ; DE MATTOS; THAINES; DE MADRON et al., 2015; 

DAWKINS; PHILIP, 1998). The volume increment, or net production, in other words, is what 

matters most. The population structure of a tree, the cutting cycle, and the applied minimum 

logging diameter (MLD) all have an impact on the volume increment rate. The initial harvested 

volumes likely cannot be recovered within the existing short-cutting cycle lengths (which is not 
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the purpose of forest management), and forest managers or policymakers need to be made aware 

of this.  

There is a huge gap between the demand and supply of wood products in Ethiopia 

(MEFCC 2015). This has resulted in increased import of wood products from 17,750 cubic 

meter in 1997 to 128,914 cubic meter in 2017 and is expected to reach 158 million cubic meter 

by 2033  (TOLERA, 2021). During these periods, the country spent on average over 118 million 

USD per year on importing various wood products. Hence it is very important to explore an 

alternative to decrease the dependency on importing wood products and satisfy the ever-

growing national wood demand. We found that the studied forest had a large amount of 

harvestable volume of wood potential based on the current structure and diameter growth rate. 

Our simulation analysis revealed that 22 m3 ha-1 wood can be sustainably harvested from J. 

procera trees above 40 cm dbh and 15 years of cutting cycles from the Chilimo forest.  

Currently, most of the existing natural forests are administered through a Participatory 

Forest Management approach (PFM). Evidence from recent studies showed that this approach 

could not be able to provide adequate income for the forest-based communities (SUTCLIFFE; 

WOOD; MEATON, 2012). The authors suggested the importance of searching for an 

alternative to increasing the income of the local communities on a sustainable basis. Hence, the 

findings of this study i.e., cutting cycle, minimum logging diameter, and harvestable volume of 

wood could be used as inputs for policymakers to develop wood harvesting regulations, modify 

the current PFM approach, and enhance the local community’s income from the Chilimo Dry 

Afromontane Forest. Sustainable timber production could generate incentives for the forest 

managing community, generate employment for the wider community, and help Ethiopia meet 

its growing national wood demand and reduce import dependence. In this study, we developed 

a unique procedure by combining the population structure with the diameter growth rate and 

determining the sustainability of timber harvesting from the Chilimo Dry Afromontane Forest 

considering the J. procera tree population. The performance of the method could be improved 

by increasing the data from other Afromontane forests. Future efforts should focus on exploring 

the potential of other timber tree species such as Podocarpus falcatus, Hagenia abyssinica, and 

Olea cuspidata ssp. africana from the Afromontane forests and ensure domestic wood 

production.  

The timber harvesting practice should be planned in detail and strictly follow the 

principles of the Reduced Impact Logging (RIL) method. Various studies reported that RIL 

enables to maintain biodiversity and carbon storage (BERRY; PHILLIPS; LEWIS; HILL et al., 

2010; GRISCOM; ELLIS; BURIVALOVA; HALPERIN et al., 2019; MILLER; GOULDEN; 
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HUTYRA; KELLER et al., 2011; PUTZ; ZUIDEMA; SYNNOTT; PEÑA‐CLAROS et al., 

2012; SASAKI; ASNER; PAN; KNORR et al., 2016), and is promoted for timber production 

from tropical forests (PUTZ; SIST; FREDERICKSEN; DYKSTRA, 2008; VIDAL; WEST; 

PUTZ, 2016). It incorporates conducting surveys, employing directional felling, planning skid 

trails, and using climber-cutting methods (SIST; NOLAN; BERTAULT; DYKSTRA, 1998). 

Generally, RIL can reduce the overall damage to the remaining forests (BERTAULT; SIST, 

1997), thereby promoting better stand development. In this study, we consistently used the 

average diameter growth rate for the entire simulation period. However, previous studies 

showed that trees exhibited a higher growth rate after logging due to the canopy opening and 

reduced competition (GOURLET-FLEURY; MORTIER; FAYOLLE; BAYA et al., 2013; 

PEÑA-CLAROS; FREDERICKSEN; ALARCÓN; BLATE et al., 2008; SCHWARTZ; 

LOPES; MOHREN; PEÑA-CLAROS, 2013). This would result in higher yields than projected 

in our simulation. Hence, it is very important to incorporate the observed growth change due to 

logging and update the simulation in the future. Various studies have indicated that the amount 

of wood that can be harvested in the future can be improved in response to the different 

silvicultural treatments after the initial logging i.e., the liberation of potential crop trees from 

lianas and girdling of inferior species, enrichment planting of the desired trees (DE GRAAF; 

POELS; VAN ROMPAEY, 1999; PEÑA-CLAROS; FREDERICKSEN; ALARCÓN; BLATE 

et al., 2008). Hence, we recommend the timber harvesting practice should be supported with 

various types of silvicultural treatments that enhance the growth of the remnant trees and 

guarantee a sustainable harvest from the Chilimo forest.  

5 Conclusions 

Our studies indicated that the J. procera tree population has adequate structure and 

outgrowth by diameter size class that justifies continued timber management. The Chilimo 

forest has great potential and should be explored for timber production. This will enable the 

country to partly meet the national wood demand as well as diversify the source of income for 

the local communities. The simulation result revealed that the initially harvestable volume of 

wood and volume increments was considerably varied among the evaluated minimum logging 

diameters and cutting cycles. Generally, the total harvestable volume of wood will decrease 

with increasing the minimum logging diameter. However, increasing the cutting cycle length 

will increase the total harvestable volume of wood but will reduce the annual increment. Among 

the evaluated harvesting scenarios, the 40 cm MLD and a 15-year cutting cycle have been 

shown to provide the highest harvestable volume of wood (22 m3 ha-1) and volume increments 
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(1.42 m3 ha-1 yr-1). Additionally, this scenario allows for the harvesting of 9% of the standing 

J. procera trees while maintaining a larger proportion (91%) of the existing standing trees in 

the forest. The suggested management options will enable policymakers to develop appropriate 

monitoring regulations that guide timber harvesting from Dry Afromontane forests.  
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7 General conclusion 

Juniperus procera tree populations has an inverted J-shape diameter distribution pattern 

which indicates a healthy regeneration status in the Chilimo forest. The developed models 

(hypsometeric, setm volume, and biomass) enabled to estimate the missing height of trees, 

standing volume of wood, and biomass stock in the Chilimo forest. Juniperus procera has a 

mean density of 183 stems ha-1, a total basal area of 12.1 m2 ha-1, and a standing volume of 

wood 99 m3 ha-1. This indicates that the forest is overstocked and some sort of intervention, 

such as wood harvesting, is necessary to maintain a balanced and suatainable forest structure. 

Among the evaluated wood harvesting scenarios, the combination of 40 cm minimum logging 

diameter and 15 years cutting cycle sustainabily provided 22 m3 ha-1 of wood from Juniperus 

procera tree population. This will enable the country to partly meet the growing wood demand 

gap through domestic wood production. Furthermore, the information generated by this study 

including the diameter growth rate, minimum logging diameter and cutting cycles will help 

policy makers to develop wood harvesting regulations for the respected tree species which is 

abscent in Ethiopia.   
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Supplementary  

Table S1: Scientific name, frequency, density (No ha-1), basal area (m2 ha-1), and IVI 

(Importance Value Index) of all tree species (dbh > 2 cm) from the Chilimo forest. 

No Scientific name Frequency Density Basal area IVI 

1 Juniperus procera Endl. 137 182.8 10.3 47.4 

2 Olea europaea L, subsp, cuspidata 109 81.3 4.0 30.2 

3 Olinia rochetiana A, Juss. 108 98.5 2.4 28.0 

4 Maytenus gracilipes (Welw, Ex Oliv) Exell 93 117.3 0.2 22.3 

5 Podocarpus falcatus (Thunb.) Mirb. 83 73.7 1.2 20.6 

6 Scolopia theifolia Gilg, 61 69.5 0.4 14.9 

7 Rhus glutinosa Hochst, ex A, Rich, 65 32.5 0.4 14.5 

8 Osyris quadripartita Decne 62 33.3 0.1 13.5 

9 Allophylus abyssinicus (Hochst) Radlk, 50 19.6 0.6 11.4 

10 Dovyalis abyssinica (A, Rich) Warp, 45 21.2 0.0 9.6 

11 Nuxia congesta R,Br, ex Fresen 43 18.5 0.3 9.5 

12 Maytenus addat (Loes) Sebsebe 33 12.5 0.2 7.3 

13 Ekebergia capensis Sparrm, 30 5.8 0.2 6.5 

14 Bersama abyssinica Fresen, 27 5.1 0.0 5.6 

15 Prunus africana (Hook, f) Kalkm, 22 5.1 0.4 5.1 

16 Apodytes dimidiata E, Mey, ex Arn, 19 4.1 0.2 4.2 

17 Erica arborea L, 15 3.6 0.0 3.1 

18 Sideroxylon oxyacanthum Baill, 14 5.0 0.1 3.0 

19 Myrica salicifolia Hochst, ex A,Rich, 13 2.7 0.1 2.8 

20 Buddleja polystachya Fresen, 12 3.1 0.0 2.5 

21 Cassipourea malosana (Bak) Alston, 9 2.1 0.0 1.9 

22 Hagenia abyssinica (Bruce) G,F, Gmel, 7 1.1 0.2 1.7 

23 Calpurina aurea (Aiton) Benth, 7 1.5 0.0 1.4 

24 Rhamnus staddo A. Rich. 6 1.1 0.0 1.2 

25 Pavetta abyssinica Fresen 5 0.6 0.0 1.0 

26 Ilex mitis (L) Radlk, 3 1.4 0.2 1.0 

27 Celtis africana Burm, f. 2 2.1 0.1 0.6 

28 Ficus sur Forssk, 2 1.5 0.1 0.5 

29 Olea wechesteria 2 0.7 0.0 0.5 

30 Schefflera abyssinica (Hochst, ex A, Rich) Harms 1 0.1 0.0 0.2 
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31 Dombeya torrida (G,F,Gmel) P, Bamps 1 0.1 0.0 0.2 

32 Rosa abyssinica Lindley 1 0.2 0.0 0.2 

33 Croton macrostachys Del, 1 0.1 0.0 0.2 

34 Pittosporum viridiflorum Sims 1 0.1 0.0 0.2 

35 Myrsine melanophloeos (L) R, Br, 1 0.1 0.0 0.2 

36 Carissa spinarum L, 1 0.1 0.0 0.2 

37 Rhamnus prinoides L'Herit. 1 0.1 0.0 0.2 
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Table S2: Simulated harvestable volume of wood (m3 ha-1), volume increments (m3 ha-1 yr-1), 

no of harvested trees (%), and remnant trees (%) for the evaluated harvesting scenarios. 

MLD  
(cm) 

CC  
(Years) 

Variables 
Values  

Initial 1 2 3 4  5  6  

30 

15 

Harvestable volume 80 25 27 22 21 20 20 

Increment 5.3 1.7 1.8 1.5 1.4 1.3 1.3 

Harvested trees  28 14 15 12 11 11 11 

Remnant trees  72 86 85 88 89 89 89 

20 

Harvestable volume 80 36 34 29 28 28 28 

Increment 4.0 1.8 1.7 1.4 1.4 1.4 1.4 

Harvested trees  28 19 17 15 14 14 14 

Remnant trees  72 81 83 85 86 86 86 

25 

Harvestable volume 80 45 39 35 34 34 34 

Increment 3.2 1.8 1.5 1.4 1.4 1.4 1.4 

Harvested trees  28 23 19 17 17 17 17 

Remnant trees  72 77 81 83 83 83 83 

30 

Harvestable volume 80 53 43 41 40 40 40 

Increment 2.7 1.8 1.4 1.4 1.3 1.3 1.3 

Harvested trees  28 26 21 20 20 20 20 

Remnant trees  72 74 79 80 80 80 80 

35 

Harvestable volume 80 62 50 48 48 48 40 

Increment 2.3 1.8 1.4 1.4 1.4 1.4 1.2 

Harvested trees  28 29 23 22 22 22 22 

Remnant trees  72 71 77 78 78 78 78 

40 

15 

Harvestable volume 61 18 27 27 24 22 22 

Increment 4.1 1.2 1.8 1.8 1.6 1.5 1.4 

Harvested trees  19 7 11 11 10 9 9 

Remnant trees  81 93 89 89 90 91 91 

20 

Harvestable volume 61 26 35 31 29 28 27 

Increment 3.1 1.3 1.7 1.6 1.4 1.4 1.4 

Harvested trees  19 10 14 12 11 11 11 

Remnant trees  81 90 86 88 89 89 89 

25 

Harvestable volume 61 33 43 37 35 35 35 

Increment 2.4 1.3 1.7 1.5 1.4 1.4 1.4 

Harvested trees  19 13 16 14 13 13 13 

Remnant trees  81 87 84 86 87 87 87 

30 

Harvestable volume 61 43 48 42 41 41 41 

Increment 2.0 1.4 1.6 1.4 1.4 1.4 1.4 

Harvested trees  19 16 18 16 15 15 15 

Remnant trees  81 84 82 84 85 85 85 
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35 

Harvestable volume 61 51 52 47 46 46 46 

Increment 1.7 1.5 1.5 1.3 1.3 1.3 1.3 

Harvested trees  19 19 19 17 17 17 17 

Remnant trees  81 81 81 83 83 83 83 

50 

15 

Harvestable volume 42 15 18 23 23 22 21 

Increment 2.8 1.0 1.2 1.5 1.6 1.5 1.4 

Harvested trees  10 4 5 7 7 7 6 

Remnant trees  90 96 95 93 93 93 94 

20 

Harvestable volume 42 19 26 29 28 26 26 

Increment 2.1 1.0 1.3 1.5 1.4 1.3 1.3 

Harvested trees  10 6 8 9 8 8 7 

Remnant trees  90 94 92 91 92 92 93 

25 

Harvestable volume 42 24 33 34 31 30 30 

Increment 1.7 0.9 1.3 1.4 1.3 1.2 1.2 

Harvested trees  10 7 10 10 9 9 9 

Remnant trees  90 93 90 90 91 91 91 

30 

Harvestable volume 42 28 39 37 35 34 34 

Increment 1.4 0.9 1.3 1.2 1.2 1.1 1.1 

Harvested trees  10 8 11 10 10 10 10 

Remnant trees  90 92 89 90 90 90 90 

35 

Harvestable volume 42 33 43 39 38 37 37 

Increment 1.2 0.9 1.2 1.1 1.1 1.1 1.1 

Harvested trees  10 9 12 11 11 11 11 

Remnant trees  90 91 88 89 89 89 89 

60 

15 

Harvestable volume 23 8 9 11 13 13 13 

Increment 1.5 0.5 0.6 0.7 0.8 0.9 0.9 

Harvested trees  5 2 2 2 3 3 3 

Remnant trees  95 98 98 98 97 97 97 

20 

Harvestable volume 23 10 12 15 16 16 15 

Increment 1.2 0.5 0.6 0.7 0.8 0.8 0.8 

Harvested trees  5 2 3 3 4 4 3 

Remnant trees  95 98 97 97 96 96 97 

25 

Harvestable volume 23 11 18 21 21 20 20 

Increment 0.9 0.5 0.7 0.9 0.9 0.8 0.8 

Harvested trees  5 3 4 5 5 5 4 

Remnant trees  95 97 96 95 95 95 96 

30 

Harvestable volume 23 16 22 25 23 23 22 

Increment 0.8 0.5 0.7 0.8 0.8 0.8 0.7 

Harvested trees  5 3 5 5 5 5 5 

Remnant trees  95 97 95 95 95 95 95 
35 Harvestable volume 23 18 26 27 25 25 25 
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Increment 0.7 0.5 0.7 0.8 0.7 0.7 0.7 

Harvested trees  5 4 6 6 6 5 5 

Remnant trees  95 96 94 94 94 95 95 
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Figure S1: Population structure of selected tree species from the Chilimo forest 


	3b9c4b987d8eb58c653416adc76a73bd2e91acac5721e68ccc3d919d7288f13a.pdf
	6dce7f0eae20e5b8d1213b9ba88870f466228554deec75e192811b8a2548df77.pdf
	3c63d00126702098f2b11365be46e220673d9eb9e136b12cf05e854604f94a87.pdf
	3b9c4b987d8eb58c653416adc76a73bd2e91acac5721e68ccc3d919d7288f13a.pdf

