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RESUMO

MARCELINO, Reginaldo Arthur Gléria, M.Sc., Universidade Federal de Vicosa,
dezembro de 2023. Identificacdo e quantificacdo de residuos madeireiros pos-
colheita florestal usando segmentacao de imagens. Orientador: Alexandre Simdes
Lorenzon. Coorientadores: Gustavo Eduardo Marcatti e Ernani Lopes Possato.

No ambito das atividades florestais, a colheita florestal surge como a operacdo mais
onerosa na produgdo de madeira, superando potencialmente 50% do valor total da
madeira na fabrica. Os residuos de madeira, deixados no campo, representam uma
perda econémica substancial, entre 2% e 15% do volume total de madeira comercial.
Nesse contexto, 0 emprego de sensores embarcados em aeronave remotamente
pilotada surge como uma solucdo inovadora para a identificacdo e mensuracao
desses residuos florestais. Assim, o presente estudo se propds a desenvolver uma
metodologia para identificar e quantificar residuos madeireiros pos-colheita,
considerando dimensdes comerciais (comprimento > 3 m e diametro >4 cm), por meio
de imagens de alta resolucdo espacial capturadas por Aeronave remotamente
pilotada. A pesquisa foi conduzida em éareas especificas de plantios comerciais de
eucalipto no estado de S&o Paulo, Brasil, sob dois sistemas de colheita florestal tora
curta e tora longa. As imagens foram adquiridas por aeronave remotamente pilotada
em RGB, em trés alturas diferentes, para tora curta (60, 90 e 120 m) e tora longa (40,
60 e 80 m). Foi desenvolvido um algoritmo (script) em Python por meio da biblioteca
OpenCV, com aplicacdo de técnicas para segmentacdo de bordas e deteccao de
objetos. A validacdo de campo foi realizada com alocacéo de parcelas circulares na
propor¢cdo 1:1ha, e a cubagem pelo método Smalian para calculo dos desvios
volumétricos. A acuracia das imagens com as toras identificadas foi avaliada pelo
indice AcATaMa para classificacéo (0 - Nao residuo e 1 Residuo). A metodologia foi
eficiente para identificacédo e quantificacdo dos residuos, em que, as alturas de 120 m
para toras curtas e 80 m para toras longas apresentaram as melhores acuracias,
atingindo valores de 0,88 e 0,85, respectivamente, e ainda com desvios volumétricos
percentuais inferiores a 2,5%. Foi observado um padréo de quanto menor o tamanho
do pixel mais complexo a deteccdo dos objetos pelo algoritmo. Essa analise tem
impacto direto na eficiéncia operacional de aquisicdo de imagens por Aeronave

remotamente pilotada, devido a aumentar o rendimento em hectares avaliados. A



diversidade nas dimensdes dos residuos destaca a necessidade de ajustes
especificos no algoritmo para garantia da identificacdo precisa de toras para cada
sistemas de colheita. No sistema de toras curtas, cerca de 84% do volume total é
composto por toras com comprimentos superiores a 3 metros, enquanto no sistema
de toras longas esse valor € aproximadamente 68%. Os filtros de suavizacdo, foram
cruciais para o sucesso do processamento do algoritmo, quanto a identificacéo precisa
das toras nas imagens, devido ao aumento da precisdo na etapa de deteccdo de
bordas. Essa abordagem de Analise de Objetos Baseada em Imagem (OBIA) em
ambiente Python mostrou-se promissora, ao abrir oportunidades de melhorias
continuas da automatizacdo dessas atividades de inventario florestal de residuos por
imagem. Os resultados obtidos destacam a flexibilidade, reprodutibilidade e
aplicabilidade desta metodologia no monitoramento de areas colhidas, ao promover a
implementacdo de acdes para melhoria da gestdo de qualidade nas operagfes de

colheita e silvicultura subsequentes.

Palavras-chave: Geotecnologia; Gestao de qualidade; Monitoramento; Algoritmo;

Segmentacado de objetos;



ABSTRACT

MARCELINO, Reginaldo Arthur Gléria, M.Sc., Universidade Federal de Vicosa,
December, 2023. Identification and quantification post-harvest forests wastes
using image segmentation. Adviser: Alexandre Simdes Lorenzon. Co-advisers:
Gustavo Eduardo Marcatti and Ernani Lopes Possato.

In the context of forestry activities, forest harvesting emerges as the costliest operation
in timber production, potentially exceeding 50% of the total timber value at the factory.
Forest wastes left in the field represent a substantial economic loss, ranging from 2%
to 15% of the total volume of commercial wood. In this scenario, the use of sensors
mounted on drone emerges as an innovative solution for the identification and
measurement of these forest residues. Therefore, this study aimed to develop a
methodology to identify and quantify post-harvest forests wastes, considering
commercial dimensions (length > 3 m and diameter > 4 cm), through high spatial
resolution images captured by drone. The research was conducted in specific areas of
commercial eucalyptus plantations in the state of Sdo Paulo, Brazil, under two forest
harvesting systems: Cut-To-Length and Tree Length. Images were acquired by drone
in RGB, at three different heights for Cut-To-Length (60, 90, and 120 m) and Tree
Length (40, 60, and 80 m). A Python algorithm was developed using the OpenCV
library, applying techniques for edge segmentation and object detection. Field
validation was performed by allocating circular plots in a 1:1 ha ratio, and volume
discrepancies were calculated using the Smalian method. The accuracy of images with
identified logs was evaluated using the AcATaMa index for classification (0 - No
residue and 1 - Residue). The methodology was efficient for the identification and
guantification of forest wastes, with heights of 120 m for Cut-To-Length and 80 m for
Tree Length presenting the highest accuracies, reaching values of 0.88 and 0.85,
respectively, with volumetric percentage discrepancies below 2.5%. A pattern was
observed where the smaller the pixel size, the more complex the object detection by
the algorithm. This analysis has a direct impact on the operational efficiency of drone
image acquisition, as it increases the yield in evaluated hectares. The diversity in
forests wastes dimensions highlights the need for specific adjustments in the algorithm
to ensure accurate log identification for each harvesting system. In the Cut-To-Length

system, about 84% of the total volume consists of logs longer than 3 meters, while in



the Tree Length system, this value is approximately 68%. Smoothing filters were
crucial for the success of the algorithm processing, enhancing precision in the edge
detection phase and ensuring accurate log identification in the images. This Object-
Based Image Analysis (OBIA) approach in the Python environment has proven
promising by opening opportunities for continuous improvement in the automation of
forest wastes inventory through imagery. The results underscore the flexibility,
reproducibility, and applicability of this methodology in monitoring harvested areas,
promoting the implementation of actions to enhance quality management in

subsequent harvesting and silviculture operations.

Keywords: Geotechnology; Quality management; Monitoring; Algorithm; Object

segmentation;
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1. INTRODUCAO

Dentre as atividades florestais, a colheita florestal € a operacéo de maior custo
a madeira posta na fabrica, com potencial de ultrapassar 50% do valor da madeira. As
atividades de colheita incluem corte, extracdo, carregamento da madeira nos veiculos
de transporte e demais operacdes que venham a ocorrer no talhdo florestal (Machado
et al. 2014; Nakahata et al. 2014). Diversas variaveis podem influenciar o desempenho
e a qualidade dessas operacbes, sendo identificadas por meio de estudos com
estimativas da produtividade, eficiéncia e custos, além do que o custo médio da
madeira extraida tende a aumentar proporcionalmente ao desperdicio de madeira em
campo (Barreto et al. 1998; Simdes & Fenner, 2010; Rotili et al. 2022).

O desperdicio de madeira ao longo da atividade de colheita, ocorre
principalmente quando parte do material lenhoso de interesse eventualmente é
deixada no campo, e a perda econémica pode variar entre 2 e 15% do volume de
madeira comercial colhida no talhdo (Nakahata et al. 2014; Serpe et al. 2018). Mesmo
com todos os cuidados nas especificacdes, ainda pode-se ter volume significativo de
residuos lenhosos com potencial de serem convertidos em matéria prima, sejam para
fins energéticos e/ou celulésicos (Kizha & Han, 2016; IBA, 2023; 2023a).

Os residuos madeireiros podem estar na forma de: tocos, toras de dimensdes
comerciais, ponteiros de fuste, toras ou feixes de madeira deixados inadvertidamente
dentro do talhdo ou concentrados na beira das estradas, toras quebradas ou mortas
(Machado et al. 2014; Kizha & Han, 2016). Além de ndo gerar receita, toda essa
madeira residual prejudica a movimentacdo das maquinas que realizam as operacdes
posteriores de silvicultura, como preparo do solo e de plantio; logo, aumentam-se o0s
custos dessas atividades (De Graaf et al. 2003; Kizha & Han, 2016).

A identificacdo e quantificagdo dos residuos florestais sédo cruciais para
orientar iniciativas de aprimoramento da eficiéncia das opera¢cbes em campo, a fim de
garantir a reducéo de custos e perdas durante a colheita e transporte da madeira. No
entanto, o método tradicional de quantificagdo dos residuos em campo é complexo,
demorado e dispendioso, ao exigir que equipes percorram o talhdo para identificar,
classificar e mensurar os residuos de madeira. Realizar um censo pos-colheita com
esses métodos convencionais ou mesmo a amostragem em grade, que é desenhar

7

manualmente as dimensdes da tora, é impraticavel devido ao alto custo e tempo
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envolvido. Além disso, essas abordagens apresentam margens de erro significativas,
0 que compromete a precisdo dos resultados e prolonga o processo de analise,
prejudicando as abordagens da gestao de qualidade.

Contudo o uso de geotecnologias para identificacdo e quantificacdo dos
residuos, por meio de aquisicdo remota de imagens séo alternativas viaveis do ponto
de vista operacional e econdmico para a reducéo de custos nas atividades de campo
(Sowa, 2014; Oliveira et al. 2020). Além do aprimoramento da gestdo da qualidade
pois reduz o tempo de medi¢cdo quando comparado ao método tradicional de medig&o
in situ (Stahl et al. 2001; Kizha & Han, 2015; Shokirov et al. 2021).

A utilizacdo de sensores embarcados em Aeronave remotamente pilotada
abre novas perspectivas para a quantificacdo dos residuos florestais. Essa
abordagem é altamente eficaz porque fornece informacdes detalhadas sobre as
caracteristicas dos materiais presentes nas imagens. Essa técnica ndo se limita
apenas a contextos florestais, mas pode ser aplicada em uma variedade de areas,
incluindo mapeamento urbano, rural, geolégico e agricola de precisdao. Essa
abordagem possibilita monitoramento constante dos residuos, além de contribuir para
a indicacdo de areas criticas com elevado desperdicio de madeira, ao gerar
percepcdes importantes na melhoria da gestao de qualidade em processos florestais
nas empresas (Santos & Faria, 2017; Braz et al.,, 2017; Bargos & Matias, 2018;
Embrapa, 2019; Dainelli et al. 2021; 2021a; Tupinamba-Simdes et al. 2022; Dias et
al., 2020; Dainelli et al. 2021; 2021a).

Assim, o0 presente projeto teve como objetivo identificar e quantificar residuos
madeireiros pos-colheita florestal com dimensfées comerciais (> 3 m de comprimento
e > 4 cm de didmetro) com uso de técnicas de segmentacdo de imagens de alta
resolucao espacial oriundas de Aeronave remotamente pilotada, sob dois sistemas de
colheitas distintos toras curtas e toras longas numa area de plantio comercial de
eucalipto. Acrescido disso, teve como foco central servir como fonte de inovacéo, e
formular uma tecnologia replicavel e adaptavel a diferentes situacdes a fim de gerar
novas rotas e direcionamentos multidisciplinares ao integrar técnicas do

sensoriamento remoto e manejo florestal na gestdo de qualidade florestal.
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2. REVISAO DE LITERATURA

2.1 A colheita florestal
2.1.1 Apresentacéo geral

A colheita compreende um dos componentes principais da producéo florestal
e tem por objetivo preparar e levar a madeira até o local de transporte para o patio
industrial. Para o planejamento da colheita, ha varidveis multidisciplinares envolvidas
a fim de obter resultados sustentaveis e viaveis economicamente, que equilibram os
aspectos econdbmicos, sociais e ambientais, ao proporcionar beneficios duradouros
para as comunidades, empresas e o meio ambiente (Strang, 1983; Dykstra & Heinrich,
1996; Machado, 2014; Mac Donagh et al. 2017; Poudyal et al. 2018 Marchi et al. 2018;
Vasconcelos & Silva Junior, 2021).

Até o beneficiamento da madeira, a colheita é a etapa com maior custo para
as empresas florestais, ultrapassando em alguns casos 50% do total das despesas
de producdo e interfere diretamente na qualidade dos produtos gerados nos
processos industriais. O que demandam de novos meios quanto a métodos de
aproveitamento e reaproveitamento, reducao de custos e eficiéncia operacional a fim
de gerar menos gastos para a companhia (Machado, 2014; Mac Donagh et al. 2017;
Diniz et al. 2020).

2.1.2 Sistemas de colheita florestal na geragéo de residuos

O sistema de colheita florestal é caracterizado como um conjunto integrado de
atividades com finalidade de melhorar a utilizagéo eficiente de recursos humanos e
materiais na extracdo de materiais lenhosos e seus derivados, e garantia de um fluxo
continuo de madeira de forma segura e economicamente viavel (Drolet & LeBel, 2010;
Machado, 2014). Esse processo envolve discussdes abrangentes nos aspectos de
seguranca do trabalho, técnicos operacionais, silviculturais, ergonémicos, ambientais
e sociais.

O objetivo central da organizagdo em sistema de colheita é para evitar
possiveis gargalos e déficits na producdo e oferta de madeira, na interrupcdo na
cadeia produtiva e suprimento, além da garantia na qualidade e sustentabilidade do
processo de colheita florestal (Drolet & LeBel, 2010; Machado, 2014; Haggstrom &
Lindroos, 2016; Poudyal et al. 2018). As principais etapas da colheita florestal que
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podem vir a gerar residuos madeireiros no talhdo sdo: corte (derrubada,
desgalhamento, cavaqueamento, descascamento e tracamento); e extracao
(extracdo, arraste, empilhamento e carregamento), para posterior transporte da
madeira (logistica de transferéncia realizada para o patio da industria) (Machado,
2014).

Os sistemas de colheita podem variar de acordo com o estado e forma da
matéria prima utilizada em relacéo ao padrdo da empresa, com o local onde é feito as
etapas de corte e processamento inicial da madeira, com o grau de mecanizacéo e
com o tempo entre corte e carregamento da madeira que é conhecido como quente
ou frio (Machado, 2014; Guerra et al. 2016; Junior et al. 2016; Fiedler et al. 2017).
Dentre os principais maquinarios utilizados nas empresas para a etapa da colheita
estdo: Harvester, Feller, Feller-Buncher, Forwarder, Slingshot, Skidder, Garra-
tracadora, Delimber e demais gruas, e outros tratores e maquinarios adaptados ao
objetivo-sistema da empresa. No setor florestal brasileiro, cinco sistemas de colheita
sao usualmente empregados (Machado, 2014; Guerra et al. 2016; Junior et al. 2016;
Fiedler et al. 2017; Sanei Bajgiran et al. 2017; Mac Donagh et al. 2017; Miyajima et al.
2021; Oro et al. 2021; Rocha et al. 2022), sao eles:

Sistema de toras curtas (Cut-To-Length): mais empregado no Pais,
principalmente no setor da celulose. O Harvester e Forwarder sdo as maquinas mais
utilizados nesse sistema. Devido ao processamento ser todo no local de colheita das
arvores, a geracao de residuos se espalha por todo talhdo, a depender da qualidade
da operacdo e caracteristica do terreno. Dentre os residuos mais comuns deste
sistema estdo as cascas, galhos, copas e toras das arvores com diferentes
comprimentos e diametros.

Sistema de toras longas-compridas (Tree Length): a arvore é derrubada
usando Feller ou Feller-Buncher e apenas semiprocessada (desgalhada e destopada)
no local de corte por uma garra tracadora, o que centraliza os feixes de casca e
ponteiras numa linha oposta aos feixes de tora. O acabamento da madeira (p.e.,
descascamento, toragem, selecao-qualificacdo) € executado na estrada ou em um
patio temporario de processamento. Devido a essa organizagdo, ha uma
concentracéo de toras na linha de corte, com toras maiores e com casca ao longo do
sentido da linha de corte e da derrubada.

Sistema de arvores inteiras (Full Tree): a arvore é derrubada e extraida para

um patio intermediario ou estrada sem ser desgalhada e tracada. O acabamento da
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madeira (desgalha, descascamento, toragem e selecdo) é executado na estrada ou
em um patio intermediario de processamento. Os maquinarios mais utilizados séo
Feller ou Feller-Buncher para corte e derrubada, e uma garra tracadora para
processamento que vai variar com o emprego da madeira.

Sistemas de arvores completas (Whole Tree): a arvore € arrancada, o qual
inclui parte de seu sistema radicular e posterior extraida para a beira da estrada ou
patio temporario, onde é realizado o seu processamento. O emprego do Feller-
Buncher para arrancar toda arvore com mais presenca de raiz possivel, pois em sua
maioria das vezes é um sistema adotado em madeiras para biomassa de carvao
vegetal, o uso de Skidder para baldeio e garras tracadoras para processamento.

Sistema de cavacos de madeira (Chipping): A arvore € derrubada e pode ser
processada no local de derrubada com uso do Feller ou Feller-Buncher ou Harvester,
€ extraida na forma de cavacos, diretamente para a margem da estrada ou patio com
auxilios de picadores e garra tracadoras para estocagem ou transporte diretamente
para patio da industria. No geral, h4 trés subsistemas: cavaqueamento integral,
cavagueamento parcial com casca, e cavaqueamento parcial sem casca.

Cada sistema de colheita exerce diferentes impactos na geracao dos residuos
florestais, além de influenciar diretamente a fertilidade do solo, o desempenho das
magquinas, 0s custos operacionais da empresa, a disponibilidade de coprodutos e as
oportunidades derivadas do aproveitamento desses residuos (Thiffault et al. 2014;
Legout et al. 2020). Kizha & Han, (2016) avaliaram que as etapas da separagéo e o
processamento de residuos florestais nos talhbes aumentam o custo global da
operacdo de colheita florestal em 10%, contudo esse valor foi inferior ao que os
residuos no campo representam para as demais operacdes e a perda econdmica em

razéo do néo aproveitamento do volume de madeira desperdigado.

2.1.3 Gestao de Qualidade na colheita florestal

A gestéo ou controle de qualidade pode ser conceituada como um sistema
amplo, complexo e que abrange todas as areas da empresa, em um esforco comum
e cooperativo, a fim de estabelecer, otimizar e assegurar a qualidade da producéo e
operacao, em niveis de viabilidade econémica, além de priorizar as necessidades dos
clientes e consumidores (Jacovine et al. 2005; Rotili et al. 2022). O setor florestal
competitivo e sustentavel busca se diferenciar do ponto de vista da qualidade de seus

produtos e processos operacionais sem elevar os custos de producao (Jacovine et al.
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1999; Jacovine et al. 2005). Assim, inUmeras ferramentas de gestdo da qualidade
podem ser empregadas em conjunto de acdes nas atividades operacionais de campo
na atividade da colheita florestal a depender do tipo de madeira, das equipes
responsaveis, do tipo de maquinario e gestédo adotada. Logo, as atividades da colheita
devem estar integradas, a fim de proporcionar os melhores custos em eficiéncia e
oportunidades para melhoria continua no desenvolvimento de novos produtos e
processos nas operacoes florestais. Assim, corroborar na gestdo das operacoes,
reduzir riscos de falhas e auxiliar as organizagdes na tomada de decisdes em tempo
habil para atingir seus objetivos (Silva Oliveira et al. 2019).

Do ponto de vista histérico, a adocdo da gestdo de qualidade no setor florestal
ocorreu de forma gradual em comparacdo com outros setores. O primeiro modelo
surgiu na década de 80, seguido por um segundo modelo na década de 90 (De Freitas
et al., 1980; Trindade, 1993). Atualmente, observa-se um aumento significativo do
interesse nessa abordagem, impulsionado por diversas razdes, tais como as
necessidades dos clientes, a competicdo internacional decorrente da ampla
disponibilidade de produtos no mercado, o alinhamento com os Objetivos de
Desenvolvimento Sustentavel (ODS) estabelecidos pelas Nac¢fes Unidas, conforme
destacado no relatério do IBA (2023 e 2023a), a busca por reducdo de custos
operacionais e o aprimoramento da qualidade do produto.

Na atualidade, a maioria das empresas florestais reconhece as oportunidades
de melhoria continua nos processos produtivos, resultantes da implementacdo de
técnicas de gestdo da qualidade em todas as etapas das operacles, desde a
silvicultura até a colheita, logistica e outras atividades relacionadas (Jacovine et al.,
1999; Jacovine et al., 2005; Vasconcelos & Silva Junior, 2021; IBA, 2023; 2023a).
Essa tendéncia reflete 0 compromisso crescente do setor florestal com a eficiéncia
operacional, a exceléncia no atendimento ao cliente e a sustentabilidade ambiental.

A gestdo da qualidade na colheita florestal acontece, principalmente, na
aplicacao de ferramentas de acompanhamento e controle dos processos em tempo
real da operacédo, com intuito de fomentar a inovacéo frente a melhorias continuas,
seja em acgOes preventivas, corretivas ou paliativas, para curto e longo prazo nas
operacoes florestais (Sowa, 2014, Oliveira et al. 2020). Os indicadores da gestao de
qualidade estdo baseados em quatro pilares: avaliagdo, prevencao e presenca de

falhas internas ou externas, que fomentam os planos de acdes das atividades na
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colheita florestal, com a garantia de conformidade em suas atividades operacionais
de campo (Oliveira et al. 2020; Rotili et al. 2022).

Contudo, a melhoria das opera¢des de colheita s6 pode ser obtida se houver
um sistema de controle de qualidade integrado e implementado na empresa como
valor cultural (Jacovine et al. 2005). O que, demanda um planejamento horizontal
constante dentre os setores da colheita florestal, como citados nos seguintes estudos
de: Drolet & LeBel, (2010), Haggstrom & Lindroos, (2016), Spinelli et al. (2019), Visser
& Obi, (2021). Além disso, estudos apontam que, qualquer inferéncia nos custos da
colheita, seu impacto na receita é inversamente proporcional, ou seja, diminui
consideravelmente o percentual de custo no valor final da madeira em mais de 10%,
sendo eles: Grasso, (1998), Augustynczik et al. (2016), Silva et al. (2016), Ferreira et
al. (2018), Simioni et al. (2018), Sales et al. (2019), Santos et al. (2019), Gama et al.
(2022), e outros.

Associado a isso, a avaliacdo dos residuos madeireiros nas atividades pos-
colheita florestal tem fundamental importancia, pois permite identificar as principais
areas, médulos de corte e ou materiais genéticos que apresentam uma predisposi¢ao
desse desperdicio (Rotili et al. 2022).

2.2 Geotecnologias
2.2.1 Sensoriamento remoto

O Sensoriamento Remoto € a area do conhecimento em que sao estudados
métodos para obter informacdes dos objetos, areas ou fendbmenos por meio de dados
adquiridos de sensores, 0s quais nao devem ter contato direto para com o objeto, area
ou fendbmeno; ou seja, obter imagens e dados a distancia (Hunt Jr & Daughtry, 2018;
Woodcock et al. 2020; Wellmann et al 2020; Piovan, 2020; Dupuis et al. 2020; INPE,
2023). Os sensores podem ser agrupados em passivos ou ativos, sensores
imageadores ou nao imageadores; sistema de varredura, quadro ou fotografico (INPE,
2023).

As informacgOes obtidas pelas imagens desses sensores estéao interligadas
aos atributos e distintas bandas espectrais (comprimentos de onda), radiancia,
resolucdes radiométricas, temporais ou espaciais que interage de acordo com alvos
sob diferentes composi¢des-6ticas, como por exemplo: na vegetacao, solo, agua,
edificacoes, dentre outros (Piovan, 2020). Tais dados sé&o importantes para as etapas

do Processamento Digital das Imagens — PDI, com objetivos de aprimorar a qualidade
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dos dados e imagens; automatizar processos; integrar dados; facilitar a interpretacao
das imagens; modelar produtos e coprodutos de interesse, sob os pilares econémicos,
sociais, ambientais e cientificos do usuario e instituicdo responsavel (Hengl, 2019;
Woodcock et al. 2020; Piovan, 2020; INPE, 2023).

2.2.2 Uso de aeronave remotamente pilotada para coleta de imagens

Os Veiculos aéreo nao tripulado, ou Aeronave Remotamente Pilotada, sdo
alternativas vantajosas para levantamentos, monitoramentos e mapeamentos de
ecossistemas de forma remota em estudos de escala detalhada. Atualmente o uso
desse equipamento permite 0 monitoramento responsivo, imediato, oportuno e mais
“econdmico” de fendbmenos como da identificacdo dos residuos pdés-colheita nos
talhdes de plantio florestal (Zhang et al. 2016; 2016a). O tipo e tamanho da aeronave
remotamente pilotada varia com o uso da pesquisa e sensor embarcado, contudo
algumas partes sédo essenciais para seu bom funcionamento e coleta de informacoes,
como: bateria, motor, asas, controlador eletrénico de velocidade (ESC-Eletronic
Speed Controller), placa controladora (GPS e giroscopio), cAmera, sensores, Ailerons,
Elevadores, Leme, carga Util e trem de pouso.

Atualmente sdo desenvolvidas pesquisas cientificas em diferentes areas do
conhecimento e objetivos, como: diagnose ambiental, manejo e capacidade do uso da
terra, deteccdo e monitoramento de desmatamento ambiental e mudanca climéatica,
desenvolvimento e aprimoramento do pensamento espacial (mapeamento de areas,
contribuicdo para obtencdo de agricultura sustentavel, mapeamento do risco de
ocorréncia de incéndios florestais, estimativa e dindmica da biomassa, estoque de
carbono, atividades relacionadas ao inventario florestal, colheita e transporte florestal;
dentre inmeros outros (Zhang et al. 2016; 2016a; Santos & Faria, 2017; Braz et al.,
2017; Bargos & Matias, 2018; Talbot et al. 2018; Hunt Jr & Daughtry, 2018; Embrapa,
2019; Zgraggen, 2019; Dias et al., 2020; Bourgoin et al. 2020; Sun et al. 2021; Dainelli
et al. 2021; 2021a; Tupinamba-Simodes et al. 2022).

Acrescido disso, o emprego do Aeronave remotamente pilotada para obter
imagens de alta resolucao espacial tem fundamental importancia no planejamento das
atividades da colheita florestal, com finalidade de aumentar o rendimento operacional
e de produtividade (Baena et al. 2018; Wu et al. 2019; Windrim et al. 2019; Marra et
al. 2021; Tanut et al. 2021; Ferreira et al. 2021).
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As aeronaves remotamente pilotadas oferecem vantagens significativas
devido a sua habilidade de voar em altitudes mais baixas em comparacdo com
plataformas orbitais. Isso resulta na aquisicdo de imagens com resolucdo espacial
muito alta, variando de 0,5 a 10 centimetros numa maior resolucdo temporal. Essa
capacidade possibilita a coleta eficiente de dados de plantas e animais, fornecendo
destaques valiosos sobre suas interacdes com o ambiente. Além disso, as aeronaves
remotamente pilotada demonstram eficAcia notavel na deteccdo e medicdo de
propriedades no dossel da floresta, bem como na identificagdo de residuos
madeireiros no talhdo (Zhang et al. 2016; 2016a). Em suma, os Aeronave
remotamente pilotada equipados com sensores de camera atuam em areas remotas
de dificil acesso, 0 que tornam ainda mais vantajoso quanto ao seu uso (Piovan,
2020).

Entretanto, para garantir a conformidade legal e a seguranca durante missées
OuU VOoOoS com aeronaves remotamente pilotadas, é essencial seguir as
regulamentacdes estabelecidas por instituicbes como a Agéncia Nacional de Aviagao
Civil (ANAC) e a Agéncia Nacional de Telecomunica¢des (ANATEL). Isso inclui a
obtencdo de autorizacbes de voo do Departamento de Controle do Espaco Aéreo
(DECEA) e do Sistema de Acesso de Aeronaves Remotamente Pilotadas
(SARPAS/RPAS), além do cumprimento de normas especificas e da elaboracédo de
um manual de voo detalhado. Paralelamente, € crucial realizar uma avaliacdo de
riscos abrangente antes de cada operacdo, considerando fatores como condi¢des
meteoroldgicas, presenca de obstaculos e potenciais interferéncias. Além disso, é
obrigatoério contratar um seguro RETA para cobrir eventuais danos a terceiros durante
a atividade, garantindo a conformidade legal e protegendo tanto os operadores quanto
o publico em geral (ANAC, 2022; ANATEL, 2022; DECEA, 2022; 2022a).

2.3 Classificagcdo de imagens digitais
2.3.1 Técnicas de classificacao de imagens

A classificacdo de imagens no sensoriamento remoto refere-se ao processo de
obtencao de rétulos ou categorias especificas para diferentes partes de uma imagem
obtida por sensores remotos. Esse procedimento envolve a aplicacdo de técnicas para
identificar e separar areas ou objetos com caracteristicas semelhantes, permitindo a
interpretacdo e analise dos elementos presentes na cena capturada pelo sensor. A

classificacdo de imagens é uma etapa crucial na sele¢édo de informacgdes especificas
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a partir de dados de sensoriamento remoto, o que possibilita o entendimento e
monitoramento de diversas informacdes na superficie terrestre (Haralick et al. 1973,
Lu & Weng, 2007; Abburu & Golla, 2015; Ma et al. 2017; Lv & Wang, 2020; Imani &
Ghassemian, 2020; Bhojanapalli et al. 2021).

Este processo € essencial para a interpretacéo e analise de dados obtidos por
sensoriamento remoto. Atualmente, destacam-se diversas abordagens para a
classificagdo de imagens incluindo: N&o supervisionada, Semi supervisionada,
Supervisionada, Aprendizado Profundo, Hibrida (juncdo de metodologias), Andlise
orientada ao objeto, ou Fotointerpretacao (Figura 01). Essa variedade de métodos

reflete a complexidade e diversidade de aplicacfes na interpretacdo de imagens.

CLASSIFICAGAO
DE IMAGENS
(TECNICAS DE APRENDIZAGEM)

[
[ I ]

FOTOINTERPRETAGAO TECNICAS: POR PIXEL E OU POR REGIOES HIBRIDA
(COM OU SEM CONHECIMENTO (CARACTERISTICAS-ATRIBUTOS ESPECTRAIS DE (COMBINAGAO DE
PREVIO DA AREA) MODELOS DESCRITIVOS, ITERATIVOS E PREDITIVOS) METODOLOGIAS)

APLICAGAO DE INTELIGENCIA ARTIFICIAL - IA (MODELOS
NAO PARAMETRICOS)

SUPERVISIONADA NAO ANALISE ORIENTADA-BASEADA AO SEMI SUPERVISIONADA
(AMOSTRAS DE SUPERVISIONADA OBJETO* (DADOS ROTULADOS E
TREINAMENTO) (AGRUPAMENTOS) (SUPER-SUPERVISIONADA E NAQ ROTULADOS NO
SEGMENTACAQ DE IMAGENS) TREINAMENTO)
MAXIMA -
VEROSSIMILHANGA; KMEDIAS; ]
PARALELEPIPEDO; g ATRIBUTOS QUANTO MAQUINAS DE VETOR DE
DISTANGIA ISODATA, A: GEOMETRIA SUPORTE, ALGORITMOS
CLUSTERING :
EUCLIDIANA; - (FORMA), TAMANHO, | | BASEADOS EM GRAFOS,
REGRESSAO; ARVORE TEXTURA E L AUTOTREINAMENTO,
DE DECISAQ; REDES INTELIGIGENCIA CONTEXTO TREINAMENTO
NEURAIS ARTIFICIAIS; ARTIFICIAL - GEOGRAFICO. COLABORATIVO E
OUTROS DEEP LEARNING. TREINAMENTO TRIPLO.
ECOGNITION;
REDES NEURAIS CONVOLUGIONAIS Rl iavil
(RNC ou CNN), REDE DE CRENGA L FEAURE
PROFUNDA (RCP ou DBN) E EXTRACTION: YOLO:
AUTOENCODER EMPILHADO (SAE). OPENCIV '

Figura 01: Tipos de classificacdes de imagens e as subdivisdes quanto as técnicas,
diferenciagdes e principais algoritmos ou ferramentas utilizados. Fonte: Autor, (2023),
adaptado de (Haralick et al. 1973; Lu & Weng, 2007; Abburu & Golla, 2015; Ma et al.
2017; Lv & Wang, 2020; Imani & Ghassemian, 2020; Bhojanapalli et al. 2021).

Ha dois principais tipos de classificadores: por pixel que avalia pixels
homogéneos por meio de probabilidades, distancias e critérios de avaliagéo,
subdivididos em estatisticos e deterministicos e por regido que considera
agrupamentos de pixels como unidade de trabalho com caracteristicas semelhantes-
homogéneas. De forma geral, o tipo de classificacdo € definido por alguns fatores,

como: o objetivo do usuario, a escala do local de estudo, a condigdo econémica da
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empresa/grupo e as habilidades técnicas-cientificas do analista (Lu & Weng, 2007; Lv
& Wang, 2020).

2.3.1.1 Fotointerpretacao e os processos de classificacao

A fotointerpretacéo cabe principalmente da experiéncia do profissional seja no
conhecimento prévio ou detalhado da area, quanto da técnica-cientifica
correspondente as ferramentas do sensoriamento remoto disponiveis e de seus
atributos estatisticos. E uma das principais etapas da classificacdo de imagens,
guando se possibilita aplicar uma validacdo de campo em sua técnica empregada.

Contudo, a forma de avaliacdo-validacdo dos processos de classificacdo se
baseia principalmente na Verdade de campo versus a classificagéo final (imagem ou
mapa da area), contudo, alguns fatores estatisticos ligados a acuracia e precisdo sdo
importantes, como: percentual de erro, matriz confusdo, indice kappa, indice de
desempenho geral e por classe (omissdo e comissao), dentre outros que facilite o
entendimento do modelo estabelecido (Lu & Weng, 2007; Foody, 2008; Lv & Wang,
2020).

Ainda referente a avaliacao da classificacdo automatica, os autores Cihlar et al.
(1998) e De Fries e Chan (2000) propuseram alguns critérios fundamentais que devem
satisfazer (quando aplicavel e requerido), sendo eles: reprodutibilidade, robustez aos
ruidos nos dados do treinamento, precisao, estabilidade do algoritmo, aplicabilidade
uniforme, capacidade de utilizar plenamente o contetdo informacional dos dados, e
objetividade. Além disso, para uma boa classificacdo deve-se observar a forma de

obtencéo e selecédo dos dados coletados pelos sensores.

2.3.1.2 Classificagao nao supervisionada

A classificacdo de imagem néo supervisionada pode ser considerada a técnica
mais indicada quando ndo se tem conhecimento prévio do local de pesquisa.
Inicialmente o algoritmo agrupa os pixels em “clusters” com base em suas
propriedades e caracteristicas espectrais. Em seguida, classifica cada cluster com
uma classe de uso e cobertura do solo que tenha caracteristicas “semelhantes” (Paoli
et al. 2009; Jian, 2012; Dhingra & Kumar, 2019; Lv & Wang, 2020). Os algoritmos mais
comuns sao os ISODATA, e K-média.

2.3.1.3 Classificagéo supervisionada
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Na classificacdo supervisionada, seleciona-se amostras representativas para
cada classe de uso e cobertura do solo, assim, os algoritmos entéo utilizam esses
“sitios de treinamento” as amostras de treinamento e os aplica & imagem inteira para
gerar o produto classificado, baseado nas avaliagBes estatisticas dos atributos
selecionados. Logo, para esse tipo de classificacdo faz-se necessario ter
conhecimento profundo do algoritmo e métricas selecionadas ou conhecimento prévio
da regido estudada (baseado em campo ou literatura), a fim de conhecer as principais
caracteristicas da vegetacao e solo, para auxiliar na divisao e definicdo de fronteiras
entre as classes de amostragem e validacao, a fim de diminuir erros e incertezas na
classificacao.

As trés etapas bésicas principais para se ter essa classificacdo sdo: selecionar
as amostras de treinamento, gerar um arquivo de assinatura (base) que é responsavel
por armazenar todas as informacdes e combinacdes espectrais para as amostras de
treinamento, calibrar o modelo e classificar (Tuia et al. 2011; Zhang et al. 2016; 2016a;
Jiang et al. 2016; Sima et al. 2018; Dhingra & Kumar, 2019; Lv & Wang, 2020). Os
algoritmos mais comuns sdo: Maxima Verossimilhanca, Regressdo, Arvore de
Deciséo, dentre outros.

Acrescido disso, atualmente as técnicas da aprendizagem profundo (Deep
Learning), vém sendo amplamente difundidas dentre os algoritmos supervisionados,
com técnicas de aprendizado profundo derivados de uma Inteligéncia Artificial mais
robusta e complexa, como o Yolo (Zhang et al. 2016; 2016a; He et al. 2019; Li et al.
2019; Mou et al. 2020; Lv & Wang, 2020; Bhojanapalli et al. 2021).

2.3.1.4 Classificagado semi supervisionada

A classificacdo semi-supervisionada surge como alternativa de suprir as
demandas e “erros” gerados pela supervisionada e ndo supervisionada. Pois nela sao
utilizados dados rotulados e néao rotulados durante o treinamento do classificador,
assim compensa a falta de aprendizado do nédo supervisionado (falta de conhecimento
prévio entre a relacao das categorias agrupadas e reais) e do supervisionado (quando
tém poucas amostras para os rétulos das classes).

Assim, esse método de classificacdo € baseado em amostras de dados
rotulados (pequena quantidade) e ndo rotulados no espaco de caracteristicas, como
forma de buscar melhor precisdo nos resultados. Utiliza-se as maquinas de vetor de

suporte, algoritmos baseados em grafos e autotreinamento, treinamento colaborativo
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e treinamento triplo (Krishnapuram et al. 2004; Wang et al. 2015; Han et al. 2015;
Yanping et al. 2015; Kipf & Welling, 2016; Lv & Wang, 2020; Wang & Du, 2021).

2.3.1.5 Classificagéo orientada ao objeto - OBIA

Na classificacdo orientada ao objeto - OBIA, o foco principal é gerar objetos
segmentados com geometrias e caracteristicas semelhantes, por meio de
agrupamento de pixels (regides), logo, ndo ha pixels Unicos, assim, indica-se trabalhar
com imagens de alta resolucdo, pois possibilita maior detalhamento da area
(Blaschke, 2010; Powers et al. 2012; Arvor et al. 2013; Blaschke et al. 2014; Ma et al.
2017). As caracteristicas que auxiliam na diferenciacdo dos objetos séo:

Geometria ou forma: classifica objetos de acordo com geometrias pré-
determinada ou uma estatistica de forma, ou seja, testa a geometria de um objeto com
a forma mais proxima que ele possui.

Textura: pode ser de acordo com sua textura, que é a homogeneidade de um
objeto.

Espectral: um dos principais utilizados, pois se usa o valor médio das
propriedades espectrais, como, infravermelho préximo, infravermelho de onda curta,
vermelho, verde ou azul — RGB, dentre outras combinac¢des espectrais disponiveis.

Contexto e caracteristicas geograficos: também pode ser considerado o
contexto que estdo empregados, ou seja, tais objetos tém relacdes de proximidade e
distancia entre vizinhos, assim se define caracteristicas que podem ser utilizados
nessa classificacao.

Na classificacdo OBIA, alguns algoritmos e bibliotecas sdo mais utilizados e ou
ja estdo em maiores etapas de desenvolvimento, sendo eles: eCognition, Yolo,
OpenCV, DeepForest, dentre outros. A segmentacao pode variar de acordo com a
técnica escolhida e subdividida em trés grandes grupos, entretanto é essencial
determinar a escala de segmentagdo apropriada a fim de obter resultados de
segmentacao otimizados e condizentes com a area avaliada, sao eles:

Baseada em descontinuidade: nessa técnica ela divide a imagem ao
considerar as mudancas abrutas ou discrepantes (nos niveis de cinza), que pode ser
feito através de uma matriz de convolugéo, que sdo responsaveis por detectar pontos
isolados, bordas e linhas do objeto.

Baseada em similaridade: ja nesta o que é levado em consideracdo é o

interior dos objetos, ou seja, analisa as propriedades similares nos pixels que pode
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ser feito por: crescimento de regides (responsavel por agregar regides-pixels vizinhos
até ndo haver mais possibilidades, os quais possuem caracteristicas similares),
limiarizacdo (neste ja é realizado uma discretizacdo dos dados-objetos por meio de
histogramas, os quais possuem limiares de 1 ou 0, para separar objetos), detecgcao
de bacias (esse utiliza de técnicas de ambos os métodos anteriores, pois ele detecta
bordas e agrega regides, o resultado é semelhante a um modelo digital de elevacao e
o limiar € definido pelo usuario, em que os objetos sdo criados), piramides (método
mais radical, pois o algoritmo divide a imagem trabalhada em quadrantes arbitrarios
por meio da identificacéo dos pixels, em que séo reconhecidos o0s objetos da imagem)
e clustering (quando ocorre uma conversao da imagem em atributos (valores-pontos),
e 0s objetos sdo definidos justamente pela separagédo das nuvens de pontos, a forma
como se separa 0s agrupamentos séo variados como o K-MEDIAS).

Baseada em objeto (multi resolucdo): nesse método a imagem pode ser
segmentada sob diferentes caracteristicas como sua forma, compacidade, suavidade,
bordas, espectro, entorno (pixels vizinhos), dentre outros. O limiar (escala do objeto)
é definido pelo usuério, em que a cor e forma define sua uniformidade e a escala seu
tamanho.

Acrescido disso, quando se tem imagens de baixa a média resolucéo espacial,
tanto as técnicas tradicionais de classificacdo por pixel quanto em OBIA exercem
muito bem suas respectivas funcionalidades dentro do contexto imposto, porém,
quando se combinado uma imagem de altissima resolucdo espacial, a OBIA é mais
indicada, pois reduz o erro de identificacao das classes (Cleve et al. 2008; Myint et al.
2011; Addink et al. 2012; Tehrany et al. 2014; Blaschke et al. 2014).

O contexto histérico do desenvolvimento das técnicas de Andlise de Imagens
Baseada em Objetos (OBIA) remonta ao inicio dos anos 2000, quando comecou a ser
intensivamente explorada. Desde entdo, houve um aumento significativo no interesse
por essa abordagem, impulsionado ndo apenas pela evolucéo continua dos sensores
de imagem, tanto orbitais quanto terrestres, mas também pela crescente
disponibilidade e diversidade de dados gerados por esses sensores. A proliferacao
desses dados, combinada com avangos na linguagem de programacao e nas técnicas
de inteligéncia artificial, tem estimulado um aprofundamento dos estudos e uma ampla
aplicagcéo da OBIA em diversos campos, incluindo universidades e empresas do setor

geoespacial.
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Essa convergéncia de fatores tem contribuido para a consolidacdo da OBIA
como uma ferramenta poderosa para analise e interpretacdo de imagens,
impulsionando sua adog&o e desenvolvimento em varias areas das geotecnologias
(Blaschke & Strobl, 2001; Lu & Weng, 2007; Blaschke, 2010; Ma et al. 2017; Imani &
Ghassemian, 2020). Com isso a técnica OBIA s6 vem a ganhar e espaco no cenario
Internacional e Nacional nas atividades da engenharia florestal (Ma et al. 2017),

principalmente quando se observa o atual cenario brasileiro das industrias florestais.

2.4 Técnicas de segmentacédo e deteccao de objetos
2.4.1 Biblioteca OpenCV — conceituacao

A utilizacdo de geotecnologias em conjunto com softwares de automacgao
computacional ganha destaque crescente nas pesquisas brasileiras. Esse destaque é
atribuido a sua aplicabilidade versatil, capacidade de reproducdo dos resultados,
robustez das solu¢des propostas e a natureza do cédigo aberto, o que possibilita sua
implementag&o em diversas areas de estudo.

O R e Python emergem como escolhas proeminentes no setor florestal. Essa
preferéncia se justifica devido a varios motivos, como a sua capacidade de incorporar
e adaptar uma ampla gama de funcdes e bibliotecas gratuitas da linguagem de
programacao, inclusive de sua multidisciplinaridade e diversidade nas funcionalidades
quanto as funcbes e pacotes disponiveis. Além disso, sdo amplamente empregados
em empresas do setor florestal. Sua utilizacdo promove o aprimoramento da
produtividade, sustentabilidade e eficacia dos processamentos de dados,
notadamente aqueles provenientes de imagens capturadas por Aeronave
remotamente pilotada. A colaboragao para o desenvolvimento conjunto e a énfase na
ciéncia de dados reproduzivel e adaptavel, de acesso aberto, sdo caracteristicas
adicionais que consolidam a posi¢ao desses softwares como pilares fundamentais no
contexto florestal e demais setores industriais (R, 2023; Python, 2023).

Nesse sentido, o0 OpenCV - Open Source Computer Vision Library (OpenCV;
2023), como biblioteca de linguagem computacional e aprendizado de maquina de
codigo aberto, veio para fornecer uma infraestrutura aplicavel e revolucionaria para
diversos aplicativos de visdo computacional além de acelerar o uso da percepcao do
algoritmo nos produtos e ou objetos da imagem. E um produto licenciado Apache 2 o
que o torna sua utilizacdo e modificacdo de codigo pelas empresas mais facil e

iterativa. Devido a gama de possibilidades de algoritmos do OpenCV, sao utilizados
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para detectar e reconhecer rostos, identificar e detectar objetos, classificar acdes
humanas em videos, rastrear movimentos de cameras, rastrear objetos estaticos e
em movimento, dentre outros (OpenCV; 2023).

Ao considerar a previsdo da biblioteca OpenCV na deteccdo de objetos, foi
escolhido para realizar o reconhecimento de residuos madeireiros pdés-colheita
florestais que pode se destacar diante das atividades de identificacdo, localizacédo e
mensuragao das toras remanescentes no talhdo. As utilidades e aplicabilidades do
OpenCV séo evidentes, pois oferece interfaces para C++, Python, Java e MATLAB, o
gue abrange uma ampla gama de linguagens de programacdo. Além disso, sua
compatibilidade com sistemas operacionais como Windows, Linux, Android e Mac OS

confere-lhe uma aplicabilidade robusta em diferentes ambientes de desenvolvimento.

2.4.2 Biblioteca OpenCV — Deteccéao de bordas (Canny)

O algoritmo Canny Edge Detection é utilizado para detec¢do de bordas,
desenvolvido pelo pesquisador por John F. Canny in (OpenCV, 2023a). A etapa de
deteccdo de bordas é uma técnica crucial para extrair informacdes estruturais Uteis de
diferentes objetos de visdo que compdem a imagem, além de reduzir drasticamente a
guantidade de dados a serem processados, por vir a aumentar a eficiéncia de
deteccdo de formas geométricas contidas na imagem. Para compreender seu
funcionamento deve-se subdividir em alguns estagios (ja intrinsecos ao cédigo),
sendo eles:

Reducado de ruido: Como a deteccdo de bordas é suscetivel a ruido na
imagem devido a sua resolucao, o primeiro passo é remover-reduzir o ruido existente
com aplicacao do filtro gaussiano 5x5, mas pode variar de acordo com a aplicabilidade
do modelo.

Gradiente de Intensidade de borda na Imagem: A imagem suavizada € entao
filtrada com um kernel Sobel na direcdo horizontal e vertical para obter a primeira
derivada na direcédo horizontal (Gx) e direcdo vertical (Gy). Assim, por meio dessas
duas imagens, podemos encontrar o gradiente de borda e a direcdo de cada pixel, da

seguinte forma (equagdes abaixo):
Eql. G = G2+ G

Em que:
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Gx = dire¢ao horizontal;
Gy = direcao vertical;
G = Gradiente de Borda

Eg2. 6 = tan™?! (2—3:)

Em que:

6 = angulo dos gradientes;

De forma geral, a direcao do gradiente é sempre perpendicular as arestas, e €
arredondado para um dos quatro angulos que representam as direcdes vertical,
horizontal e duas diagonais, o que auxilia nessa diferenciacdo das bordas para os
agrupamentos de pixels e cada pixel, cada aresta gera um angulo de inclinacéo o que
define o direcionamento da borda.

Supressdo ndo méaxima ou limiar de magnitude de gradiente: Apds obter a
magnitude e a direcdo do gradiente na imagem, uma varredura completa é realizada
a fim de remover quaisquer pixels indesejados que possam nao constituir a borda.
Para tal, cada pixel, é verificado se € um maximo local em sua vizinhanca na direcao
do gradiente, ou nao, (Figura 02). Sendo que, o ponto A esta na borda (na direcéo
vertical), em que a direcdo do gradiente é normal a borda. J& os pontos B e C estdo
em direcdo ao gradiente. Assim, o ponto A é analisado por meio dos pontos B e C
para possibilidade de se formar um méaximo local, se afirmativo, é considerado para o
proximo estagio, caso contrario, € suprimido (colocado em zero), logo, o resultado

obtido das bordas € uma imagem binaria com "bordas suaves" detectadas:

C A B
o *>
Direcao do Diregao do
gradiente gradiente
borda borda

Figura 02: llustracdo da direcéo do gradiente para a definicdo e constituicdo do que é
a borda no objeto. Fonte: OpenCV, (2023a)
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Limite de Histerese ou limite duplo: Neste estagio decide quais séo arestas-
linhas e quais ndo séo, e para isso, precisa-se de dois valores limites, minVal e
maxVal. Em que, para qualquer aresta com gradiente de intensidade maior que
maxVal certamente sdo arestas e aquelas abaixo de minVal certamente ndo sao
arestas, portanto, serdo descartadas. Para aqueles que estao entre esses limiares sao
classificados como arestas ou ndo arestas baseadas em sua conectividade. Logo, se
estiverem conectados a pixels de "borda segura”, eles sdo considerados parte das
bordas, contrario sédo descartados (Figura 03).

Em que, a borda A esta acima do maxVal, portanto considerada como "certa".
Embora a aresta C esteja abaixo de maxVal, ela esta conectada a aresta A, de modo
que também é considerada uma aresta vélida e obtém-se a curva completa. Porém, a
aresta B, embora esteja acima de minVal e esteja ha mesma regido que a aresta C,
nao esta conectada a nenhuma "aresta segura", de modo que sera descartada.
Portanto, € muito importante selecionar minvVal e maxVal de acordo para obter o
resultado correto, um parametro que pode variar com a imagem base, objetivo do
trabalho, qualidade da coleta de dados, e visualizacao final das bordas. Nesse estagio
também remove pequenos ruidos de pixels na suposi¢cao de que as bordas sao linhas

longas e seguras.

A
x / maxVal

« - minVal

Figura 03: llustracéo da composicao de quais serdo arestas-linhas e quais ndo, sob a

Otica dos valores limites, minVal e maxVal. Fonte: OpenCV, (2023a)

2.4.3 Biblioteca OpenCV — Detecc¢éo de geometria
A aplicacdo da transformada de HoughLinesP da scikit-image utilizado pela
biblioteca OpenCV para deteccdo das linhas apds realce das bordas e segmentagéo

dos objetos de interesse (Jiri Matas et al., 2000), com finalidade de exibir linhas retas
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(geometria lineares) de uma imagem de aresta binaria de entrada (edges). Sabe-se
que geralmente as linhas sdo parametrizadas como y = mx +c, com gradiente” m” e
interceptacdo “y c”, no entanto, isso significaria que “m” vai ao infinito para linhas
verticais. Assim para evitar isso, 0 algoritmo constréi um segmento perpendicular a
linha, levando a origem, o qual a linha é representada pelo comprimento desse
segmento, “r’
2023).

Logo, a transformada de Hough constr6i uma matriz de histograma

e o0 angulo que ele faz com o eixo x, 8 (HoughLineP, 2023; HoughLines,

representando o espago de parametros, “M x N”, para “M” diferentes valores do “r’ e
“N”, valores diferentes de 6. Dessa forma, para cada combinagéo de parametros, “r e
8", tem-se 0 numero de pixels diferentes de zero na imagem de entrada que cairia
perto da linha correspondente e incrementamos a matriz na posic¢ao (r,0), o que evita
linhas infinitas, a determinar inclinacao e limites de ocorréncia.

Dessa forma, para cada pixel diferente de zero “tendenciando” para possiveis
candidatos de linha, e os méximos locais no histograma resultante indicam os
parametros das linhas mais provaveis detectados na imagem. Para incrementar essa
funcionalidade tem-se a Transformada Hough Probabilistica Progressiva, o qual diz
que, as linhas podem ser extraidas durante o processo de votacdo caminhando ao
longo dos componentes conectados, 0 que retorna o inicio e o fim de cada segmento
de linha. Para tal, o algoritmo possui trés parametros principais: um limite geral que é
aplicado ao acumulador Hough, um comprimento minimo de linha (threshold) e a
lacuna de linha (line_length) que influencia a fuséo de linha, parametros que variam
com a aplicacéo e qualidade da imagem gerada (Duda & Hart, 1972; Galamhos et al.
1999).

3. MATERIAIS E METODOS

3.1 Area de estudo

O estudo foi conduzido em duas areas especificas de plantios comerciais de
eucalipto localizadas no estado de S&o Paulo, Brasil, (Figura 04). Ambas as regides
exibem caracteristicas predominantemente plano e suave ondulado (EMBRAPA,
2023), tipicos da paisagem central do Estado. Com base em dados climaticos oficiais

da EMBRAPA (2023a) do Estado, essas areas sdo conhecidas por apresentar
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variacfes sazonais distintas, sendo o clima tropical de altitude, que, segundo a
classificacdo de Koeppen, é o Cwa, clima quente com inverno seco e periodos de
precipitagdo moderada, fatores que influenciam diretamente no ciclo de crescimento
das arvores, com uma meédia anual de precipitacdo de aproximadamente 1.400
milimetros e temperatura média anual em torno de 27°C. Quanto ao solo, segundo a
classificacdo proposta no Sistema Brasileiro de Classificacdo de Solos (SiBCS) a
regido estuda apresenta uma variacao de Latossolos Vermelhos, Vermelho-Amarelos
Distréficos e Areias Quartzosas sobre as rochas do Grupo Bauru e os sedimentos
terciarios (EMBRAPA, 2023).

Além disso, a topografia levemente ondulada dessas areas tem impacto direto
na escolha dos sistemas de colheita adotados. Na Area A (Figura 4), de 17 hectares,
onde o sistema de Toras Curtas é implementado, observa-se o uso de Harvester, para
as etapas do corte e pré-processamento das arvores, e Forwarder, que sao
empregados para o baldeio e empilnamento de toras. Por outro lado, na Area B (Figura
4), de 16 hectares, onde se adota o sistema de toras longas, sdo utilizados Feller e
garras tracadoras de toras, que lidam de forma mais eficiente com a manipulagéao de
toras de maior comprimento. Esses sistemas de colheita demonstram diferencas
marcantes na geracao de residuos, sendo essencial considerar esses fatores ao

avaliar as operac0des de colheita e suas implicac6es no manejo de residuos florestais.
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Figura 04: Localizacdo dos talhdes onde foram coletados os dados de residuos
madeireiros pos-colheita florestal, sob os cenérios avaliados. Fonte: Autor, (2023).

3.2 Aguisigéo das imagens (Ortomosaico)

A aquisicdo das imagens foi realizada por meio de sobrevoos de Aeronave
remotamente pilotada nos respectivos talhdes ap6s a fase de colheita florestal,
qguando as toras ja haviam sido baldeadas e ou transportadas, para isso foram
demarcados os pontos de controle fisicamente no terreno com objetos claramente
visiveis e identificaveis (placas refletivas) de onde foram os pontos de partida do voo.
As imagens, ortomosaico, capturadas contém informacdes em RGB e com resolucdes
espaciais distintas, definidas em funcdo de trés alturas de voo. Para garantir a
qualidade das imagens, foram considerados planos de voo com uma velocidade
média de 7 m/s, com uma sobreposicao fontal de 80% e uma sobreposicao lateral de
75% usando o modelo Phantom 4 Pro da DJI de 40 megapixel para tora curta e Mavic
2 Pro da DJI de 12 megapixel para tora longa. Assim, foi estabelecido um protocolo
de coleta para possibilitar a comparacdo dos resultados obtidos apdés o
processamento das imagens dos Aeronave remotamente pilotada, Tabela 01.
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Tabela 01: Descricdo dos atributos de coletas de acordo com o sistema adotado a fim
de obter variacdo de dados para o algoritmo.

Atributos da coleta Toras curtas — Area A Toras longas — Area B
Periodo do voo 09 a 15h 09 a 15h
Altura do voo 60,90e 120 m 40,60 e 80 m
Ortomosaico -
Resolucao espacial 08-12-15cm 1,1-18-25cm
(pixel)
Toras Sem casca Com casca

Tempo pos-colheita

(corte + baldeio) 30 dias 40 dias

O objetivo primordial desta etapa foi garantir a aplicabilidade e reprodutibilidade
do modelo em diversas situacdes de campo no setor florestal. Considera-se o impacto
nas operacgdes, bem como possiveis variacdes volumétricas, como sendo resultantes

das condicdes especificas de cada sistema testado.

3.3 Levantamento de campo

A validacdo de campo, constitui ha alocacao e distribuicdo de forma aleatoria
de parcelas circulares de 400 m2 com raio de 11,28 m, nas areas de estudo, de acordo
com a proporcao 1:1 ha da area total de cada sistema (Figura 05), ou seja, a cada 1
hectare de area foi lancado uma parcela aleatéria. A marcacdo e numeracao dos
residuos em campo foram realizadas antes do sobrevoo com Aeronave remotamente
pilotada, para posterior identificacdo nas imagens, conforme demarcado nos pontos
centrais de cada parcela. Em algumas situacdes, as toras foram identificadas com
spray e, quando possivel, marcadas com sacos plasticos, (Figura 06), proporcionando

uma validacao robusta dos resultados obtidos.
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Figura 05: Distribuicdo amostral aleatéria das parcelas para validacdo em campo do
modelo de identificacdo e quantificacdo proposto para as areas de estudo (A) tora
curta, e (B) tora longa. Fonte: Autor (2023).
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Figura 06: Parcela amostral no campo, e forma adotada para delimitar o centro da
parcela e identificagéo das toras. Fonte: Autor, (2023).

Durante as inspec¢Oes realizadas nas parcelas de campo, foram tomadas
diversas medidas e observacbes cruciais para a compreensdo abrangente do
ambiente de estudo, tais como: identificar os diferentes tipos de residuos presentes
na area, o que permitiu uma melhor compreenséo das praticas locais de operacéo de
colheita e baldeio. Foi tomado também, registros fotograficos de toras soterradas,
pontuado a presenca de cascas, galhos, feixes de ponteiras e outros detritos
organicos que podem obstruir a visibilidade das toras por parte dos Aeronave
remotamente pilotada e o grau de sujidade na area e a exposi¢cdo de solos para
facilitar as discussdes apos aplicacdo da técnica de segmentacéo de objetos.

Essa abordagem das parcelas amostrais, permitiu a quantificacéo dos residuos
madeireiros ou toras por meio de cubagem. Essa quantificacdo do volume das toras
presentes em cada parcela foi adotada o modelo de cubagem do tipo Smalian. Assim,
para todas as toras acima de um metro de comprimento, foram medidos dois

diametros (d) para cada extremidade (quatro medi¢cdes no total) e comprimento da
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tora (h) (Figura 07), como forma de calcular o volume mais proximo do real presente

em cada parcela.

okl d3

d2 « a4 a

]
o h
Figura 07: Esquema ilustrativo da medi¢cdo nas toras para calculo da cubagem

Smalian dos residuos nas parcelas. Fonte: Autor, (2023).

Contudo, com intuito de verificar a assertividade do modelo, foi feito uma
divisao de dois critérios para inclusao das toras (> 3 metros de comprimento e 24 cm
de diametro) denominado de residuo comercial (desperdicio da colheita), dos residuos
totais (toras > 1 m comprimento e sem delimitacao de diametro), assim para o volume

foi considerado as seguintes equacoes:

2
- (d1 +2di+1)
9i = 740000

_(gi+ gi+1)
=k

vt = Zv]

Em que:

h

d1 = diametro da tora em cm;

g1 = &rea basal de cada extremidade da tora em m?;
h = comprimento da tora em m;

vj = volume total da tora em m3;

vt = volume total da parcela em m3.

Sendo que os cenarios avaliados detém das seguintes estatisticas descritivas,
(Tabela 02), quando se compara os dados guantitativos de volume coletados em

campo.
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Tabela 02: Dados descritivos referentes a cubagem dos residuos totais e comerciais

estimados para a area total dos talhdes, destinada ao modelo de tora curta e tora

longa.
Residuos totais (< 4 cm diametro) - 17 Parcelas
Projeto Tahdo  Média (m¥ha)  M&x.  Min. - Desvbad.
) (m¥ha) (méha)  (m¥ha)
Tora curta 00A 21.57 48.03  10.03 9.62
Tora longa 00B 15.72 26.12 5.80 3.25
. ~ Vol. produgéo % " N° toras /
Projeto Talhdo total (m3/ha) residuo Area (ha) parcela
Tora curta 00A 345.92 6.00% 17.20 1524
Tora longa 00B 448.15 3.51% 16.39 223
Residuos comerciais (= 4 cm didmetro) - 17 Parcelas
. ~ o Max. Min. DesvPad.
3
Projeto Talh&o Média (m3/ha) (m¥ha)  (m?ha) (m#/ha)
Tora curta 00A 16.66 35.51 5.99 7.98
Tora longa 00B 14.57 24.50 4.53 3.64
. ~ Vol. producéo % " N° toras /
Projeto Talhdo total (m3/ha) residuo Area (ha) parcela
Tora curta 00A 345.92 5.00% 17.20 1214
Tora longa 00B 448.15 3.25%  16.39 183

3.4 Pré-processamento das imagens

O pré-processamento e a visualizacao das imagens obtidas foram realizados
por meio do Sistema de Informacfes Geogréficas QGIS (QGIS, 2023). As etapas do
processamento incluiram a mosaicagem das imagens (feita pelos respectivos
aplicativos da aeronave remotamente pilotada de cada sistema), seguida pela
exportacao e visualizacao da qualidade da imagem resultante para cada altura de voo.
Durante esse processo, foram observados fatores como resolugéo espacial (tamanho
do pixel), extenséo e bandas espectrais (RGB) das imagens para cada area, a fim de
auxiliar na etapa posterior de definicAo dos parédmetros do algoritmo para cada
sistema, visto que foram areas e residuos madeireiros distintos.

Ao levar em conta a capacidade de processamento computacional, torna-se
economicamente vantajoso subdividir os dados das imagens em areas menores, a fim
de prevenir erros durante o processamento e reducdo de tempo no processamento.
Para garantia da eficiéncia no processamento pelo algoritmo, foi feito um

procedimento de recorte nas imagens raster (para todas as alturas testadas) por meio
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do cddigo em linguagem R, no ambiente RStudio (RStudio, 2023). Nesse processo,
foi carregado um arquivo shapefile no formato de poligonos para executar o recorte.
Script 1 (Para recorte nas imagens de todas as alturas testadas):
#Recortar arquivo raster
# Instale e carregue as bibliotecas necessarias
install.packages(c("raster", "sf", "rgdal"))
library(raster)
library(sf)
library(rgdal)
# Carregar camada raster
raster_original <- raster("C:/Users/Map.tif")
# Carregue o arquivo shapefile contendo os poligonos de recorte
shapefile <- st_read("C:/Users/SHP.shp")
shapefile <- st_transform(shapefile, crs = crs(raster_original))
# Recortar o raster para cada poligono e salvar em arquivos separados
for (i in seq_len(nrow(shapefile))) {
poly <- shapefile[i, ]
raster_recortado <- mask(raster_original, poly)
# Salvar o raster recortado em um novo arquivo
output_path <- paste0("C:/Users/Ortho_recort_", i, ".tif")
writeRaster(raster_recortado, output_path, format = "GTiff", overwrite = TRUE)

}

3.5 Processamento das imagens
3.5.1 Etapas do processamento das imagens

Para implementar as técnicas de segmentacao e detec¢do de objetos e bordas
€ essencial criar segmentos ou regides, considerada a etapa mais critica desta
classificacao orientada ao objeto. Esses processos baseiam-se nas descontinuidades
e na similaridade, tendo como referéncia a composicdo da imagem capturada por
Aeronave remotamente pilotada. Nesse contexto, foram selecionadas previamente
configuragdes na biblioteca OpenCV para todos os sistemas avaliados, que incluem a
utilizacao de técnicas como escala de cinza (Gray — 1°), filtros de suavizacéao (Blur e

Gamma — 2°) e indices de vegetacdo (NDVI — 3°), seguindo essa ordem de prioridade,
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respectivamente, devido a organizacao estrutural do algoritmo testado, ao partir do
filtro mais simples ao mais complexo na imagem.

Além disso, foram definidos valores para as fun¢cdes Canny e HoughLinesP,
necessarios para deteccdo de bordas, segmentacdo de objetos e identificacdo de
toras na imagem RGB obtida por meio de Aeronave remotamente pilotada para cada
cenario. Esses procedimentos sao ilustrados no fluxo de processamento mostrado na
Figura 05.

Para o desenvolvimento do modelo por meio da técnica de segmentacéo e
deteccao de objetos, foram definidas as propriedades elementares, os parametros de
cada sistema, com o objetivo de evidenciar a distincdo dos constituintes na imagem,
para garantia de confiabilidade para a classificagdo ou identificagdo. Os atributos
considerados nessa metodologia foram: indices e bandas espectrais que compreende
diferentes composicdes de bandas espectrais, notadamente aquelas pertencentes ao
RGB, textura que abrange a intensidade espacial dos pixels, bem como as
propriedades dos niveis de cinza e os efeitos resultantes da aplicacdo de filtros de
suavizacao e por fim de geometria os quais inclui a forma, area, perimetro, diametro,
comprimento e homogeneidade dos objetos em questao.

Para implementacdo dessa metodologia, um fluxograma foi delineado, (Figura
08), o qual detalha as etapas do script para cada fase e parametro da biblioteca

utilizada, bem como a sequéncia de acdes a serem realizadas no ambiente Python.

“ Detecgao borda:
(Min. e Max.)*

Obter dados Converter RGB em Segmentagao e
georreferenciados escala de cinza - detecgdo de bordas
(gdal.open) (cv2.cvtColor) (ev2.Canny)

Deteccéo e identificagao

Boa detecgao?**
das linhas (toras)

Sim (cv2.HoughLinesP)
indice NDVI Filtro Gaussiano A— —)

(RasterBand()) (cv2.GaussianBlur)

Imagem RGB
(cv2.imread)

Boa 4

quantificagéo?

-3
Alterar
4

*Etapas que permite adaptagdo dos parametros para cada cenario e finalidade a ser testado.
**Etapas da avaliagdo visual da deteccédo, somada a avaliagdo prévia estatistica pelo cédigo do algoritmo.

Visualizar imagem Salvar imagem gerada e
gerada (gdal.open e = reclassificada (cv2.line e
plt.imshow) reclass)

Extragdo de métricas para
quantificagao (polys.append;
lines.append;
filtered_polys.append)

parémetros

Figura 08: Etapas e fungbes do algoritmo OpenCV utilizadas no processamento das
imagens para obtencdo da identificacdo e quantificacdo dos residuos florestais pos-
colheita. Fonte: Autor, (2023).
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3.6 Script do modelo de identificacdo e quantificacdo (Rotina via Python)

A descricdo detalhada do cddigo via Python, para identificacdo e quantificacao
dos residuos poés-colheita florestal, esta no Apéndice A desse documento, contendo
as bibliotecas e funcdes totais para possibilitar a deteccéao de toras nas imagens dos
Aeronave remotamente pilotada. Cada cenario foi avaliado em diferentes valores
minimos e méaximos dos parédmetros (Tabela 03), para deteccdo de bordas e
segmentacgao de objetos, a fim de auxiliar na comparacgéo e escolha do melhor valor,
pois h& variacdo dos tipos de residuos no solo, bem como das caracteristicas do

talhdo no momento do voo para cada empresa.

Tabela 03: Valores testados no algoritmo com intuito de identificar os melhores

parametros para cada cenario avaliado.

Parametro Toras curtas — Area A Toras Longas — Area B
Borda - cv2.Canny Min (120 a 200) Min (100 a 370)
Borda - cv2.Canny Max (200 a 300) Max (250 a 450)

Deteccéo - minLineLength = 50, 25 minLineLength = 50, 25
cv2.HoughLinesP maxLineGap = 10, 5 maxLineGap = 10, 5

Suavizacéao-

cv2.GaussianBlur SX3 5x5

3.7 Avaliacgéo estatistica do algoritmo

Para fins comparativos e de visualizacdo dos resultados nos diferentes cenarios
avaliados, foram elaborados gréaficos realizados em ambiente R e mapas no QGIS.
Na validacéo estatistica da metodologia proposta, foram adotadas duas abordagens,
0 AcATaMa para comparar a acuracia na classificacdo (1 — Residuo e 0 — N&o
Residuo) e a Validacdo de Campo para avaliar os desvios percentuais nos volumes
de toras observados pela cubagem comparados aos estimados pelo algoritmo.

Para a avalicdo de acuracia foi conduzida utilizando o plugin Accuracy
Assessment of Thematic Maps ou Avaliagdo da Classificagdo de Imagens com
Técnicas de Aprendizado de Maquina - AcATaMa, integrado ao software QGIS. Entre
as opcbes de alocacdo de amostras, optou-se pela amostragem aleatoria
estratificada, com base na propor¢céo da area. Essa abordagem emprega a formula

de tamanho de amostra de Cochran (1977), calculando o tamanho total da amostra e
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0 numero de pontos para cada estrato de acordo com a propor¢cao da area de cada
estrato no mapa, sendo essa propor¢cdo determinada automaticamente pelo
AcATaMa. Isso implicou no ndmero de amostras para cada classe de forma
proporcional a sua representatividade no conjunto de dados original, do total de 400
amostras distribuidas nas classes para cada altura de voo, distribuidas aleatoriamente
nas imagens classificadas e subsequentemente interpretadas com o auxilio de
imagens obtidas pela aeronave remotamente pilotada. O valor de acuracia foi
fundamental para verificar a eficacia do modelo na identificagdo dos residuos (0 e 1),
0 que gerou uma visdo precisa do desempenho do algoritmo quanto a sua

assertividade na identificacao.

4. RESULTADOS E DISCUSSAO

4.1 Algoritmo de identificacdo e quantificacao

De forma geral, foi possivel estabelecer uma metodologia eficaz para a
identificacdo e quantificacdo de residuos, ao considerar distintos sistemas de colheita
(toras curtas e longas) por meio de imagens capturadas por Aeronave remotamente
pilotada, com o algoritmo desenvolvido, (Figura 09). Um dos beneficios proeminentes
desse procedimento é a eliminacdo da necessidade de uma fase de treinamento.
Contudo, para cada sistema de colheita, sdo recomendados valores especificos para
0S parametros, principalmente em razdo das caracteristicas espectrais e espaciais
(Tabela 04). As variacfes nas alturas de voo e na resolucéo espacial, ao influenciarem
a diferenciacdo e segmentacdo de objetos, assim como a deteccdo de bordas,
revelaram disparidades significativas entre as diferentes alturas e sistemas.

Ao considerar a diferengca entre alturas e sistemas, conforme refletido nas
avaliacbes de campo e acuréacias, (Tabela 04), observa-se comportamentos
semelhantes para ambos os sistemas, devido aos indices de desvios volumétricos
serem mais elevados em alturas de voo mais baixas (menores pixels). Quando se
avalia a assertividade do algoritmo com o real em campo (cubagem), as alturas de
120 m (tora curta) e 80 m (tora longa), apresentaram as melhores avaliacbes de
acuracia, de 0,88 e 0,85, respectivamente e variacao no desvio volumétrico de até 2,5
%, aproximadamente. Isso vale quando se compara o desvio de numero de toras

dessas respectivas alturas, o qual para os dois sistemas apresentaram um desvio
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meédio de numero de toras abaixo de 8%, ou seja, 0 nhumero de toras que o algoritmo
detectou foi em média 8% maior que a quantidade realmente tinha em campo.

Porém, ao considerar o sistema de tora curta, as imagens realizadas a 120 m,
seguidas pela altitude de 90 m, obtiveram resultados proximos a validacdo de campo.
No caso do sistema de tora longa, os resultados indicaram alturas de voo de 80 m,
seguidas pelas de 60 m, contudo ao verificar as imagens de identificacdo pelo
algoritmo apresentam resultados divergentes, isso é devido a dificuldade do algoritmo
em detectar toras em imagens de voos mais baixos (menores pixels).

Ao analisar os parametros para a deteccdo e segmentacao de objetos, assim
como a identificacdo das geometrias lineares (toras), foram observados valores
distintos para cada tipo de sistema, ou seja, em detrimento das diferencas de residuos
madeireiro o algoritmo também necessita de parametros distintos para cada sistema
de colheita. Estes resultados ressaltam a existéncia de limites 6timos, tanto maximos
guanto minimos durante a etapa de segmentacdo de bordas (percebe que ha uma
variacdo dos desvios mesmo dentro da classe de altura), e isso para cada atributo que
compde aimagem de acordo com a altitude de voo testado, assim como autores atuais
corroboram com essas afirmacdes (Zhou et al. 2020; Sriram et al. 2021; Zhou et al.
2023).

Tabela 04: Diferentes atributos e parametros testados no algoritmo comparados aos

resultados da cubagem de campo para os dois cenarios tora curta e longa.

C_enério (;Aelt\%% cv2. Canpy HqughLinep Vol médio \éSLg]gé;i? Desyio_ Acurédcia ?\ﬁ,s(\j’;o
(Sistema) (m) (min. e méax) (min. e max.) (m3/ha) (m¥ha) Volumétrico AcATaMa toras
60 150-250 50-10 57.53 16.66 40.87% 0.48 20%
60 150-250 25-5 30.38 16.66 13.72% 0.51 25%
60 120-300 50-10 69.53 16.66 52.87% 0.44 19%
60 120-300 25-5 38.75 16.66 22.09% 0.56 30%
60* 150-300 50-10 28.93 16.66 12.27% 0.55 15%
Tora 60* 150-300 25-5 27.75 16.66 11.09% 0.53 19%
Curta - 90 150-250 50-10 46.08 16.66 29.42% 0.42 22%
Area A 90* 150-250 25-5 23.65 16.66 6.99% 0.62 10%
90* 170-280 50-10 19.98 16.66 3.32% 0.67 11%
90 170-280 25-5 9.73 16.66 -6.94% 0.55 22%
90 130-260 50-10 57.73 16.66 41.07% 0.4 24%
90 130-260 25-5 27.48 16.66 10.82% 0.45 22%

120 150-200 50-10 48.00 16.66 31.34% 0.47

20%
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Cenario Altura cv2. Canny HoughLinep Vol médio Vol médio Desvio Acuréacia D%SVIO

(Sistema) de voo (min.e max)  (min. e max.) (m3/ha) cubagem Volumétrico AcATaMa N de
(m) ) ’ ) (m3/ha) toras

120* 150-200 25-5 18.80 16.66 2.14% 0.88 8%

120* 170-250 50-10 16.43 16.66 -0.23% 0.85 6%

120 170-250 25-5 14.98 16.66 -1.69% 0.59 13%

120 200-260 50-10 19.48 16.66 2.82% 0.56 19%

120 200-260 25-5 11.48 16.66 -5.19% 0.53 18%

40 200-350 50-10 60.25 14.57 45.68% 0.31 24%

40 200-350 25-5 31.50 14.57 16.93% 0.41 23%

40 250-400 50-10 48.75 14.57 34.18% 0.33 22%

40 250-400 25-5 38.25 14.57 23.68% 0.36 26%

40* 370-450 50-10 25.50 14.57 10.93% 0.49 18%

40* 370-450 25-5 11.95 14.57 -2.62% 0.42 19%

60 150-350 50-10 46.70 14.57 32.13% 0.44 20%

60* 150-350 25-5 17.03 14.57 2.46% 0.58 17%

LTora 60 175-350 50-10 43.03 14.57 28.46% 0.49 20%

onga

Area B 60* 175-350 25-5 13.98 14.57 -0.59% 0.59 16%
60 200-400 50-10 58.03 14.57 43.46% 0.33 20%

60 200-400 25-5 47.25 14.57 32.68% 0.39 18%

80 100-250 50-10 26.53 14.57 11.96% 0.55 18%

80* 100-250 25-5 13.98 14.57 -0.59% 0.85 8%

80 150-300 50-10 45.83 14.57 31.26% 0.54 15%

80* 150-300 25-5 16.25 14.57 1.68% 0.83 7%

80 200-350 50-10 47.63 14.57 33.06% 0.45 15%

80 200-350 25-5 25.26 14.57 10.69% 0.51 14%

* Parametros que apresentaram melhores resultados quanto ao desvio volumétrico e numero de toras médio das
parcelas

Ler a imagem (RGB)

Filtros suavizagao (Blur e
Gamma)*

Figura 09: Etapas sequenciais utilizadas para o processamento das imagens via

Obter as métricas para
quantificagéo*

Detectar bordas na imagem
(segmentagéo de objetos)*

Reclassificar a imagem

gerada dos residuos (1 e 0)

Remocao de
ruidos

Detecgéao e identificagao

das toras*

algoritmo para os dois sistemas, apoés avaliacdo dos resultados. Fonte: Autor, (2023).

A aplicacéo eficaz das ferramentas e funcdes do OpenCV neste estudo exige

uma compreensao profunda do funcionamento dos parametros. Essa compreensao

nao se limita apenas a este estudo especifico, mas representa uma necessidade
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fundamental para qualquer pesquisa que tenha como objetivo o reconhecimento de
objetos em imagens ao utilizar esta biblioteca. A familiaridade com as configuractes
€ essencial para otimizar e ajustar os resultados, o que garante precisdo e confianca
na deteccédo e analise de objetos na imagem.

Esses resultados ganham destaque quando se comparam as imagens originais
(RGB) em varias alturas de voo com as segmentadas e bordas detectadas pelo
algoritmo, (Figura 10). ApGs testes nessa metodologia, ficou nitido que, com uma alta
resolucdo espacial das imagens (obtidas em altitudes menores, como 60 m para o
primeiro cenario e 40 m para o segundo), o processo de segmentacao e deteccdo das
bordas dos objetos na imagem se torna mais complexo, o que dificulta a identificacdo
das toras, elevando os desvios em mais de 18% em média. Uma etapa crucial para o
sucesso da metodologia de identificacdo é a deteccdo e segmentacdo das bordas,
uma vez que elimina o alto nivel de ruido facilitando a etapa posterior de identificacdo
das toras, (Figura 10) (Ribeiro et al. 2020; Li et al. 2022; Xia et al. 2022).

Em processamento de imagens de alta resolucao espacial, o termo "ruido"
refere-se a variacdes ou interferéncias indesejadas nas caracteristicas da imagem que
nao representam informacfes relevantes para a analise pretendida. Podem ser
causadas por alguns fatores e impactar negativamente a qualidade e precisdo das
analises realizadas sobre a imagem, tais como: ruido de sensor, atmosférico,
iluminagdo, compressdo ou eletronico. E importante ressaltar que a relagdo entre
altura de voo e ruido nao € uma regra fixa, e diferentes situacdes podem resultar em
diferentes efeitos. Em que nessa metodologia teve-se de lidar com ruidos na
segmentacdo dos objetos na imagem em detrimento dos atributos de coleta e
sistemas de colheita adotados.

Quando se avalia os desvios estatisticos de volume e numero de toras para o
sistema de toras curtas, associado a imagem capturada a 120 metros nota-se que o
algoritmo apresentou melhor assertividade para segmentar 0s objetos e suprimir
ruidos, (Figura 11), o que vem a facilitar o processo de identificacdo individual das
toras (geometrias lineares), ao contrario do que foi observado na imagem a 60 metros,
para mesmo sistema. No caso do sistema de toras longas, um padrdo semelhante
também foi identificado em relacdo as alturas de voo (Figura 11), sendo a imagem
capturada a 80 metros o algoritmo apresentou melhores resultados comparado a de
40 metros, que quase nédo foi possivel diferenciar os segmentos dos objetos na

imagem, mesmo ao considerar os filtros e indices adicionais dessa metodologia.
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Figura 10: Deteccdo de bordas e segmentacdo de objetos pelo algoritmo nas
diferentes alturas avaliadas: 1) sistema de toras longas 2) sistema de toras curtas.
Fonte: Autor, (2023).
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2 - Imagem no visivel (RGB) tora curta (120 m) Autor: Marcelino, R. A. G. (2023)
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Figura 11: Identificacdo das toras pelo algoritmo nas diferentes alturas avaliadas: 1)
sistema de toras longas 2) sistema de toras curtas. Fonte: Autor, (2023).

Essa analise dentre alturas distintas impacta de maneira direta na eficiéncia
operacional da aquisicdo de imagens por aeronave remotamente pilotada pelas
equipes de campo nas empresas, visto que quanto maior a altura de voo maior o
rendimento em hectares avaliados. Do ponto de vista da gestdo de qualidade, essa
abordagem é crucial, pois amplia 0 escopo de areas a serem avaliadas, logo espera-
se resultados e processamentos mais rapidos.

A resolucéo espacial exerce impacto significativo na densidade de informacdes
por centimetro quadrado na imagem em relacdo a quantidade de informacdo dos
alvos. Assim, uma resolucdo espacial maior, descrita por pixels menores, pode
complicar o processo de analise, uma vez que a interpretacdo de dados detalhados
em alta resolucao exige capacidades de processamento mais complexas, por vezes
tornando-se inviavel, além disso, acabou por dificultar a identificagdo de residuos
madeireiros pelo algoritmo, principalmente quando se observa os desvios das
resolucdes menores comparadas as maiores. Além disso, estudos (Ding, et al.2019;
Alomari, et al. 2020; Padua, et al. 2017; Shleymovich et al. 2016), destacam a
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relevancia de considerar a complexidade inerente na separacao de objetos durante a
identificacdo de toras, visto que imagens de Aeronave remotamente pilotada
frequentemente apresentam diversos niveis de ruido e interferéncia, como: local do
voo, hora do voo, luminosidade, chuva, presenca de cascas e folhas o que dificultam
a visualizac&o da tora em campo e na imagem.

Em relacéo aos filtros de suavizacdo, sdo sensiveis ao nivel de informacéo e
detalhamento presentes no pixel (Zhang et al. 2018a), e nessa pesquisa foram cruciais
para o sucesso do processamento do algoritmo na identificagdo das toras na imagem.
Embora o filtro Blur tenha sido amplamente empregado para suavizar imagens e
diminuir o ruido, seu impacto na segmentacdo de objetos em imagens de Aeronave
remotamente pilotada pode ser variavel. Conforme destacado em um estudo continuo
conduzido por Zhang et al. (2018a), esse filtro pode auxiliar na redugcéo de pequenas
variacfes na intensidade dos pixels, resultando em bordas menos nitidas e menos
detalhes nas regides de transi¢cdo. Essa condicao pode resultar em uma segmentacao
menos precisa, especialmente em &reas caracterizadas por alta complexidade de
texturas e bordas, entretanto, isso varia com a caracteristica da imagem coletada e
objetivos da pesquisa, tais como, a resolucdo adotada, o objeto a ser segmentado, a
cobertura vegetal do local.

O filtro gama € geralmente aplicado para controlar o contraste da imagem.
Conforme indicado na pesquisa de Smith et al. (2016), a configurag&o inadequada dos
parametros do filtro gama pode resultar em distor¢gdes indesejadas na imagem, o que
causa perda de informacdes sutis, principalmente em areas de sombras e regides
reais, e isso pode ter um impacto negativo na deteccéo de bordas e na segmentacao
de objetos, ao comprometer a precisdo geral do processo.

Portanto, ao se aplicar esses filtros, € crucial ajustar suas configuracdes de
forma a equilibrar a suavizagédo do ruido sem comprometer a nitidez das bordas e a
fidelidade das caracteristicas relevantes para a segmentagéo de objetos. Esse ajuste
deve levar em consideracdo intimamente a altura de voo escolhida e os resultados
prévios na segmentacéo. Além disso, considerar o contexto especifico da cena e as
caracteristicas das imagens de Aeronave remotamente pilotada € fundamental para

garantir resultados precisos e confiaveis na detec¢do e segmentacéo de objetos.

4.2 Distribuicéo de residuos
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Compreender a diversidade nas dimensdes dos residuos e ajustar o algoritmo
e parametros de acordo é crucial para uma identificacdo precisa de toras,
principalmente ao considerar diferentes sistemas de colheita florestal. Uma analise
comparativa da distribuicdo de residuos para os dois sistemas de colheita revela
comportamentos distintos no que diz respeito a prevaléncia no campo de toras com
didmetros menores.

No sistema de toras curtas, aproximadamente, 84% do volume total de toras é
composto por toras com comprimentos maiores que 3 metros. Em relagcdo ao
diametro, cerca de 93% dos residuos encontrados nas parcelas possuem diametro
superior a 4 cm, indicando a presenca significativa de residuos passiveis de
reaproveitamento ou reciclagem que foram deixados na area pés-operacdes de
colheita, (Figura 12). J& para o sistema de toras longas, aproximadamente 68% do
volume total € composto por toras com comprimentos superiores a 3 metros, ja
relacionado ao diametro das toras quase 100 % apresentam valores superiores a 4
cm (Figura 13).
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Figura 12: Distribuicdo do volume dos residuos por classe de comprimento e de
didmetro para o sistema de toras curtas. Fonte: Autor, (2023).
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Figura 13: Distribuicdo do volume dos residuos por classe de comprimento e de
didmetro para o sistema de toras longas. Fonte: Autor, (2023).

O sistema de colheita de toras curtas se destaca pela producdo de toras de
menor comprimento, resultando em uma quantidade significativa de residuos, como
cascas, galhos e ponteiras, dispersos pelo solo. Essa caracteristica distintiva desse
sistema € a presenca de residuos fragmentados e distribuidos no solo. Em contraste,
o sistema de toras longas concentra-se no corte de arvores de maior comprimento,
resultando em menos residuos dispersos no solo e uma maior centralizagéo dos feixes
de outros residuos, incluindo cascas. Essa centralizagdo é facilitada pela presenca
das cascas nas toras durante a colheita, levando a uma disposi¢cdo mais ordenada
dos residuos no talh&o. Essas discrepancias na geragao e distribuicdo de residuos
entre os sistemas de toras curtas e longas desempenham um papel crucial na
compreensao das variacbes observadas nas praticas de colheita florestal (Pena-
Vergara et al., 2022).

Ao avaliar toda essa distribuicéo dos residuos na assertividade do algoritmo na
identificacdo e quantificacdo das toras na imagem, gera alguns questionamentos
chave para maior compreensdo da metodologia e seus parametros testados nessa
pesquisa. Sdo elas: Como a dimensao dos residuos afetam a predicdo no algoritmo
de identificacdo de toras? A cobertura do solo nos dois sistemas de colheita é

diferente, como isso afeta o acerto do algoritmo ao identificar as toras na imagem?
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Sabe-se que o comprimento e as dimensdes dos residuos tém um impacto
significativo na identificac&do de toras, logo, o algoritmo, ao processar imagens de uma
aeronave remotamente pilotada para identificar toras, leva em consideracao
caracteristicas como forma, tamanho e padrbes dos objetos na imagem e sua
distribuicdo. Fatores como: Residuos mais longos podem ter bordas mais distintas,
facilitando a deteccdo, enquanto residuos menores podem ser mais dificeis de
identificar, assim, se a resolu¢éo espacial for muito baixa, os residuos menores podem
ser perdidos na imagem ou confundidos com o fundo pelo algoritmo.

Logo, residuos de diferentes dimensdes podem introduzir niveis variados de
ruido na imagem apoés identificacdo pelo algoritmo. O processamento de residuos
maiores pode exigir mais recursos computacionais e ou aplicacdo de filtros de
suavizagdo como vimos nessa pesquisa. Dependendo da capacidade do sistema
computacional pode afetar o desempenho do algoritmo. O ambiente de colheita, toras
semi soterradas, a densidade dos residuos, podem influenciar na forma como as
dimensdes dos alvos sdo detectadas pelos algoritmos na imagem, bem como impactar

nos desvios volumétricos aparentes, como Vvisto na pesquisa.

4.3 Processamento, novos passos e melhorias

Os ajustes dos parametros de deteccdo de bordas desempenham um papel
critico na precisdo e confiabilidade da identificacdo de objetos (Wang et al. 2020;
Ribeiro et al. 2020; Xia et al. 2022), incluindo as toras. Os intervalos de variacdo nos
valores minimos e maximos das funcdes de segmentacao, deteccao e identificacédo
de residuos desempenham um papel critico na eficacia do algoritmo para a deteccao
precisa de contornos e bordas em imagens. Em termos mais especificos, esses limites
sao essenciais para discernir entre o ruido de fundo e os objetos de interesse na cena.
Valores excessivamente baixos podem resultar em uma deteccédo intensificada de
bordas e detalhes insignificantes, o que gera um aumento no ruido e na detec¢éo de
caracteristicas indesejadas. Por outro lado, valores excessivamente altos podem
acarretar a perda de informacdes cruciais, ocasionando a ndo deteccao de bordas e
objetos relevantes, como destacado nos parametros avaliados nesta pesquisa.

Além disso, é evidente, na segmentacdo dos objetos para os dois cenarios
investigados (toras curtas e longas), (Figuras 14 e 15), que a intensidade das bandas
RGB desempenha um papel distintivo, ou seja, quais dados espectrais foram mais

influentes no algoritmo. Fica claro que, a medida que o valor da intensidade média
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aumenta, a influéncia da respectiva banda na deteccdo de bordas é ampliada,
fenbmeno mais notdrio nos valores de intensidade associados as toras curtas em
comparacao com as toras longas.

Entretanto, ao analisar cada sistema, constata-se que, no caso das toras
curtas, ndo ha variacao significativa entre as bandas considerando as altitudes de voo
testadas. Por outro lado, ao avaliar as toras longas, observam-se padrdes distintos
entre as altitudes de voo, sendo notavel, especialmente a 80 metros, a proeminéncia
da intensidade na banda vermelha em relagdo as demais. Essa analise destaca a
proximidade dos valores associados aos parametros da funcéo de segmentacao de
bordas ao comparar diferentes sistemas em diversas altitudes de voo, ao considerar
suas respectivas caracteristicas distintas de residuos.

As imagens RGB podem apresentar comportamentos distintos durante o
processamento devido a variacdo na intensidade das bandas espectrais, o que
influencia a capacidade de distinguir e identificar, de maneira especifica, as toras nas
imagens de Aeronave remotamente pilotada. E relevante destacar que, em virtude das
disparidades nos sistemas e nas caracteristicas dos residuos de madeira, como a
presenca de cascas e a distribuicdo de outros detritos no solo, ocorrem impactos
significativos na reflectancia e nos indices espectrais em ambos os casos. Estudos,
como os de Hu et al. (2017), Shah et al. (2019) e Guo et al. (2020), tém enfatizado a
importancia de considerar a intensidade das bandas espectrais na realizacdo da
segmentacdo de objetos em imagens RGB, ao explorar diferentes caracteristicas

espectrais para aprimorar a precisdo desse processo.
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sistema de toras curtas, nos voos (A — 60, B—90 e C — 120 m). Fonte: Autor, (2023).
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Figura 15: Intensidade das bandas espectrais sob a influéncia da funcdo Canny do

sistema de toras longas, nos voos (A — 40, B — 60 e C — 80 m). Fonte: Autor, (2023).

De forma geral, a presenca da casca de uma arvore possui caracteristicas
Opticas diferentes em comparacdo com a madeira sem casca. A presenca de cascas
pode introduzir variacbes significativas na refletancia da luz em diferentes
comprimentos de onda (Toscano et al. 2017). Em imagens espectrais, como aquelas
obtidas por sensores em Aeronave remotamente pilotada, as caracteristicas
espectrais da casca podem levar a diferencas nas assinaturas espectrais entre
madeira com casca e madeira sem casca (Dinulica et al. 2019). Essas diferencas nas
assinaturas espectrais podem ser exploradas para identificar e distinguir areas com
madeira com casca das &reas com madeira sem casca em imagens de Aeronave
remotamente pilotada. Isso é particularmente relevante em aplicacbes como a
deteccado de toras ou residuos de madeira em operacdes florestais, o que é um dos
indicativos de diferenca da resposta do algoritmo ao ser aplicado no sistema de tora
curta e tora longa.

A interacdo entre as propriedades das imagens e as caracteristicas dos
residuos florestais tem sido objeto de estudo, com foco no desenvolvimento de
técnicas de processamento personalizadas para a deteccdo precisa e eficiente de
toras em imagens provenientes de Aeronave remotamente pilotada. Estudos
anteriores, como os de Zhang et al. (2018a), Li & Wang (2019) e Sun et al. (2019),
investigaram  diversas abordagens, estabeleceram correlagcbes entre as
caracteristicas dos residuos e 0s sinais espectrais, além de desenvolverem algoritmos
especializados para lidar com a complexidade das imagens de florestas e as variagbes
na composicado dos residuos de madeira, semelhante ao enfoque proposto neste
estudo. Entretanto, € importante ressaltar que esse campo ainda € pouco explorado
nas pesquisas brasileiras no que tange residuos florestais.

A singularidade desta abordagem metodoldgica proposta reside em sua
capacidade de enfrentar desafios altamente complexos por meio de abordagens
diretas e eficientes. Principalmente ao comparar com modelos de Deep Learning que
necessitam de uma amostragem extremamente complexa e com um numero
exorbitantemente grande de amostras para garantia de representatividade, o que

nesse algoritmo é totalmente dispensavel, uma vez que ndo tem essa etapa de
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treinamento. Além disso, esse algoritmo € um método automatizado com todas as
etapas codificadas e realizadas em um unico ambiente de programacéao, Python.

Adicionalmente, a metodologia concentra-se no monitoramento e controle do
desempenho das opera¢fes de colheita florestal. No entanto, uma das estratégias
mais solidas e eficazes para minimizar a presenca de residuos é intervir em sua
origem diretamente durante as atividades operacionais de colheita florestal, logo com
o algoritmo proposto consegue-se avaliar com precisdo o volume de residuos
madeireiros deixados no talhdo com antecedéncia para mensurar perdas, gerar agdes
de qualidade operacional e indicadores de tratativas nas areas criticas.

Na literatura, varios estudos exploraram métodos alternativos para a
segmentacdo de imagens no diagndstico ambiental, por meio de Aeronave
remotamente pilotada, especialmente em contextos internacionais, destacam-se
contribuicbes como as de Kizha & Han (2015), Ma et al. (2017), Davis (2017),
Choudhry & O'Kelly (2018), Windrim et al. (2019), Lopes Queiroz et al. (2020),
Shokirov et al. (2021) e Dainelli et al. (2021; 2021a), além de Miller et al. (2022).

Entretanto, o desenvolvimento e aplicacdo dessa técnica em interface com as
areas da colheita florestal e mensuracéao de residuos madeireiros por meio de imagens
ainda carece de ampla difusdo no setor, principalmente devido a sua facilidade de
integracdo com 0s processos de gestdo de qualidade. Nem todas as empresas
possuem atualmente um portfélio consolidado para a adocdo dessas praticas,
revelando um espago promissor para o desenvolvimento de novas tecnologias no
cenario nacional.

O monitoramento continuo dos residuos madeireiros viabiliza a estratificacao
de areas criticas, o que possibilita a identificacdo de variacbes entre 0os materiais
genéticos propensos a geracao de residuos, como arvores suscetiveis a quebras
durante o corte. Adicionalmente, esse processo estabelece um historico de
monitoramento, proporcionando destaques sobre os moddulos de colheita mais
sensiveis, 0 que aprimora assim a gestdo de qualidade nos procedimentos e na
tomada de decisdes.

Pesquisas recentes conduzidas por Oliveira & Santos (2020), Silva & Costa
(2019) e Pereira & Carvalho (2021) revelam que empresas florestais que negligenciam
0 monitoramento dos residuos poés-colheita enfrentaram perdas significativas na
gestao da qualidade e nas operacdes florestais. Essas perdas abrangem ineficiéncias

na alocacdo de recursos, desafios na previsdo de demanda, desperdicio de custos
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materiais, impactos negativos na imagem corporativa devido a praticas nao
sustentaveis.

Em contrapartida, empresas que implementam um monitoramento eficaz dos
residuos pos-colheita experimentam beneficios substanciais. Estes incluem a uso
viavel de recursos, a reducdo do desperdicio de madeira, o controle ambiental, a
conformidade com normas regulatérias, melhorias continuas na eficiéncia
operacional, bem como a valorizagcdo da marca por meio de préaticas responsaveis e
sustentaveis. Além disso, 0 monitoramento apropriado possibilita uma compreenséo
mais abrangente dos processos internos e externos da instituicao.

Assim, o avanco no desenvolvimento de medidas que viabilizam a avaliacao
continua e eficaz de dados espaciais, por meio de técnicas de modelagem, tem
impulsionado estudos aplicAveis e precisos no setor florestal. As técnicas de
segmentacao de objetos, aliadas a imagens de alta resolucdo espacial provenientes
de Aeronave remotamente pilotada, e a modelagem baseada em inteligéncia artificial,
tém se destacado pelo processamento preciso e deteccdo de objetos que refletem
fielmente a realidade do talhdo. Neste estudo, uma nova abordagem de Andlise de
Objetos Baseada em Imagem (OBIA) foi apresentada no ambiente Python, abrindo
caminho para aprimoramentos futuros, e os resultados obtidos foram promissores e

bem-sucedidos.

5. CONCLUSOES

A abordagem metodolégica empregada com esse algoritmo desenvolvido
revelou eficacia e precisdo na identificagdo e quantificacdo de residuos em ambientes
florestais, utilizando imagens obtidas por aeronave remotamente pilotada e ao
considerar diferentes sistemas de colheita, toras curtas e longas, como proposto. As
altitudes ideais de voo foram determinadas como 120 metros para toras curtas e 80
metros para toras longas, levando em conta o indice de suavizacdo aplicado na
deteccdo de bordas, resultando em desvio volumétrico inferior a 2,5 % em ambos o0s
cenarios, e acuracia, de 0,88 e 0,85, respectivamente. A flexibilidade, reprodutibilidade
e aplicabilidade demonstradas nessa metodologia enfatizam sua utilidade no
monitoramento pdés-colheita e na implementacdo de estratégias para aprimorar a

gestdo de qualidade nas subsequentes operacdes de colheita e silvicultura. Para
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pesquisas futuras, recomenda-se a exploracdo de imagens infravermelhas a fim de
avaliar seu impacto nos atributos das imagens durante a deteccédo e segmentacao de

bordas, especialmente em areas com a presenca de toras com cascas.
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APENDICE A - Script

# Script - Projeto Residuos (ldentificacdo e Quantificacdo de toras com dimensdes
comerciais)

# Baixar MINICONDA - Atualizado (https://docs.conda.io/en/latest/miniconda.html)
# Baixar PYTHON - Atualizado (https://www.python.org/downloads/)

# Baixar VSCODE - Atualizado (https://code.visualstudio.com/download)

Aqui estdo algumas observacfes sobre as etapas do codigo:

Instalacdo de bibliotecas: As bibliotecas necessarias estdo sendo instaladas no inicio
do cddigo. Certifique-se de executar esses comandos apenas uma vez para evitar
reinstalacdes desnecessarias.

Processamento da imagem: O codigo realiza varias etapas de pré-processamento na
imagem, como conversao para escala de cinza, aplicacdo de filtro Gaussiano,
correcdo gamma, entre outros, para melhorar a deteccdo de bordas.

Deteccdo de bordas: E utilizada a técnica de deteccdo de bordas Canny para
identificar as bordas na imagem pré-processada.

Identificacdo de objetos (toras): A transformada de Hough probabilistica € aplicada
para detectar as linhas que representam as toras na imagem.

Reclassificacdo da imagem: A imagem é reclassificada para atribuir valores binarios
(O ou 1) aos pixels que representam toras.

Quantificacdo das toras: A area basal e o volume das toras séo calculados com base
nas geometrias detectadas.

Salvamento dos resultados: Os resultados sao salvos em um arquivo Excel, incluindo
0 comprimento, area basal e volume das toras, bem como o nimero total de toras.

Verificacdo das influéncias das bandas espectrais: A influéncia das diferentes bandas
RGB na segmentacao de objetos € analisada e exibida em um grafico de barras.

Certifiqgue-se de fornecer os caminhos corretos para as imagens de entrada e saida,
bem como para o arquivo Excel onde os resultados serdo salvos. Além disso, verifique
se todas as bibliotecas necessarias estao instaladas corretamente.

# Instalar bibliotecas e ferramentas necessarias para o0 processamento das imagens
(uma vez somente)

pip install pyparsing==2.4.7

pip install pytesseract

python -m django --versao # 2.0.2
python3 -m django --verséo # 2.0.2
pip install --upgrade django

pip3 install --upgrade django
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python -m pip install -U scikit-image
conda install scikit-image

pip install scikit-image --upgrade
conda install -c anaconda numpy

# Solucdo de possivel erro na biblioteca: numpy e skimage
(https://stackoverflow.com/questions/54241226/importerror-cannot-import-name-
validate-lengths)

pip install opencv-python

pip3 install opencv-python

pip install opencv-contrib-python
python -m pip install matplotlib
python -m pip install imageio
conda install -c anaconda urllib3
conda install mahotas

pip install mahotas

conda install -c conda-forge gdal
pip install shapely

pip install ndimage

#instalar cv2 (se necessario) (https://stackoverflow.com/questions/46610689/how-to-
import-cv2-in-python3)

# Inicio do codigo para o processamento das imagens de drone

# Terminal “cmd” no VSCode para acessar o ambiente Python: Importar as bibliotecas
necessarias

import numpy as np

import numpy

import cv2

import cv2 as cv

from gettext import install

import io

import mahotas

from scipy import ndimage as ndi

import matplotlib.pyplot as plt
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import matplotlib.lines as mlines

from matplotlib import image as image
from skimage.io import imread

from skimage.util import img_as_ubyte
from skimage.feature import canny
from skimage.draw import line

from skimage.measure import label
from skimage import data

from skimage.transform import hough_line, hough_line_peaks
from skimage.transform import probabilistic_hough_line
from matplotlib import cm

from skimage.io import imsave

from PIL import Image

import os

import math

from osgeo import gdal

import shapely

from shapely.geometry import Polygon
import geopandas as gpd

import pandas as pd

from scipy import ndimage

# Caminho da imagem (Diretério das imagens de trabalho - mudar sempre que
necessario)

path_img9 = r'C:\Users\Documents\SHP\map_recorte_60.tif"

# Visualizacéo prévia da imagem

img_ori = imread(path_img9)

plt.imshow(img_ori)

plt.show()

# Fazer a leitura da imagem (OpenCv2) para deteccéo de bordas

imgcv = cv2.imread(path_img9, cv2.IMREAD_COLOR) #lmagem de trabalho
# Ler dados georreferenciados da imagem pela ferramenta GDAL

ds = gdal.Open(path_img9) #lmagem de trabalho



80

# Inicio da segmentacao dos objetos, deteccao de bordas

# Converter a imagem em escala de cinza RGB pela “cv2.cvtColor”
gray = cv2.cvtColor(imgcv, cv2.COLOR_BGR2GRAY)
plt.imshow(gray)

plt.show()

# Filtro de suavizacdo Gaussiano para melhorar a diferenciacéo de objetos (utilizar se
a deteccdo de bordas pela escala cinza(gray) nao foi suficiente ou tipo de solo/residuo)

blur = cv2.GaussianBlur(imgcv, (5,5), 0)
plt.imshow(blur)

plt.show()

# Aplicar correcao gamma (Filtro de brilho e contraste)
gamma = 1.5

invGamma = 1.0 / gamma

table = np.array([((i / 255.0) * invGamma) * 255 for i in np.arange(O,
256)]).astype("uint8")

gamma_corr = cv2.LUT(blur, table)

# Aplicar uma escala RGB para melhorar o contraste na imagem
red = gamma_corr[:,:,2]

green = gamma_corr[:,:,1]

blue = gamma_corr[:,:,0]

gray_gamma = cv2.addWeighted(red, 0.3, green, 0.3, 0)
gray_gamma = cv2.addWeighted(gray_gamma, 0.4, blue, 0.3, 0)
plt.imshow(gray_gamma)

plt.show()

# Aplicar indice de vegetacdo (NDVI) na imagem original para auxiliar na deteccéo de
bordas (quando no solo ha + vegetacdo e madeira)

nir_band = ds.GetRasterBand(4).ReadAsArray().astype(np.float32)
red_band = ds.GetRasterBand(3).ReadAsArray().astype(np.float32)
ndvi = (nir_band - red_band) / (nir_band + red_band)

ndvi[ndvi < 0] = 0 # Eliminar valores negativos

ndvi[ndvi > 1] = 1 # Eliminar valores maiores que 1

ndvi = (ndvi * 255).astype(np.uint8) # Converter para uint8

plt.imshow(ndvi)
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plt.show()

#cv2.imwrite(‘caminho/para/ndvi.tif', ndvi) #Se for salvar o indice NDVI criado na
imagem

#Visualizar os valores minimos e maximos da imagem a ser utilizada na funcéo Canny
hist, bins = np.histogram(gray.ravel(), bins=256, range=[0, 256])

min_value = np.argmax(hist > 0)

max_value = 255 - np.argmax(hist[::-1] > 0)

print("Valor minimo:", min_value)

print("Valor maximo:", max_value)

# Detectar bordas na imagem utilizando “cv2.canny” — canny detector pela OpenCv

edgess = cv2.Canny(gray_gamma, 150, 300, 5) #Valores minimos e maximos:
precisam ser alterados para diferentes sistemas (valor max. certamente é borda, valor
min. certamente ndo € borda)

edges = cv2.dilate(edgess, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)))
#Realcar as bordas (remover ruidos da imagem gerada)

plt.imshow(edges)
plt.show()
# Salvar a imagem das bordas (para visualiza¢do posterior somente)

cv2.imwrite(r'C:\Users\Arthur\OneDrive\Imagens
Dexco\parcela_80\map_recorte_80_ edges.tif', edges) #Alterar de acordo com o
diretorio

# Detectar pixels que formam as geometrias lineares (toras) — Identificacdo pela
Transformada de Hough Probabilistica “cv2.HoughLinesP”

lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=50,
maxLineGap=10) #Depende da imagem de borda (anterior) (Variar em
minLineLength=100, maxLineGap=20)

# Obter as informagdes de georreferenciamento da imagem para salvar a imagem
gerada nas mesmas projecoes

# Recriar informacg0es geoespaciais da imagem original

band = ds.GetRasterBand(1)

img = band.ReadAsArray() #Verificar depois com o HoughLinesP e Edges
# Dados da imagem original (pixel, projecao, extenséo e dimensao)
geotransform = ds.GetGeoTransform()

print(geotransform)

geoproj = ds.GetProjection()

print(geoproj)
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X_size = band.XSize
y_size = band.YSize
print(x_size, y_size)

# Criar uma imagem em branco com as mesmas dimensdes e GeoTiff da imagem
original (para salvar as toras detectadas)

blank_image = np.zeros((y_size, x_size), np.uint8)
blank_image = cv2.cvtColor(blank_image, cv2.COLOR_GRAY2RGB)
for line in lines:

x1, y1, x2, y2 = line[0]

cv2.line(blank_image, (x1, y1), (x2, y2), (0, 255, 0), 2) #A partir da segmentacao de
objetos e bordas identificadas detecta os objetos semelhantes, ou seja as toras
(geometria linear)

# Reclassificar os pixels da “blank_image” em: 1 onde ha toras e 0 onde nao ha toras
reclass_image = np.zeros((y_size, x_size), np.uint8)
for iin range(y_size):
for jin range(x_size):
if any(blank_imageli,j]):
reclass_imageli,j] = 1

plt.imshow(reclass_image)
plt.show()
# Salvar imagem gerada (toras) com a atulizacéo dos dados georreferenciados
driver = gdal.GetDriverByName("GTiff")

new_ds = driver.Create(r'C:\Users\Documents\SHP\map_reclass.tif", x_size, y_size,
3, gdal.GDT_Byte) #Atualizar o diretério onde sera salvo e nome do arquivo da
imagem

new_ds.SetGeoTransform(geotransform) #Resposta tem de ser '0' - sinal que foi
gravado corretamente

new_ds.SetProjection(geoproj) #Resposta tem de ser '0" - sinal que foi gravado
corretamente

new_ds.GetRasterBand(1).WriteArray(reclass_image) #Resposta tem de ser '0' - sinal
gue foi gravado corretamente

new_ds.FlushCache() #Para salvar a imagem gerada e armazenar os dados
georreferenciados corretamente

# Visualizar a imagem final gerada

dataset = gdal.Open(r'C:\Users\ Documents\SHP\map_reclass.tif") #Alterar para o
diretorio que a imagem de toras foi salva
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bandl = dataset.GetRasterBand(1) #Como a imagem possui trés bandas (poderia ser
0, 1 ou 2 — tem de testar caso ndo rode no “17”)
datal = band1l.ReadAsArray()
plt.imshow(datal, cmap='gray’)
plt.show()

#Quantidade de pixel na imagem

print("Imagem Original:", x_size *y_size, "pixels")

# verificar as informacdes georreferenciadas (status de compatibilidade)
saved_image = dataset #Imagem aberta na etapa de visualizacao

# Obter a transformacé&o georreferenciada da imagem salva
saved_transform = saved_image.GetGeoTransform()
print(saved_transform)

# Comparar a transformacéo da imagem salva com a da imagem original (tem de estar
igual para posterior quantificacao)

if saved_transform == geotransform:

print('As informacdes georreferenciadas foram salvas corretamente.")
else:

print('As informacdes georreferenciadas nao foram salvas corretamente.’)

#Quantificar Area (m?), Area basal (m?) e Volume (m?3) dos residuos (toras) detectados
na imagem (geometria lineares)

#Area de ocupacao dos residuos na imagem

area_toras_pixels = np.count_nonzero(reclass_image == 1) # Conta pixel com valor 1
(toras)

area_toras_metros_quadrados = area_toras_pixels * (res**2) # Calcular a area em
metros quadrados

print(area_toras_metros_quadrados)

#Quantificar volumetria dos objetos (toras)

# Converter a imagem reclassificada (reclass_image) em poligonos
labeled, num_features = ndimage.label(reclass_image)

polys = ndimage.find_objects(labeled)

# Criar um GeoDataFrame para os poligonos (Como uma tabela de atributos para
cada geometria linear detectada)

polygons =[]
for idx, p in enumerate(polys, start=1):
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coords = (p[1].start, p[O].start, p[1].stop, p[0].stop)

geom = Polygon([(coords[0], coords[l]), (coords[2], coords[1]), (coords[2],
coords[3]), (coords[0], coords[3])])

polygons.append({'id": idx, ‘geometry': geom})

gdf = gpd.GeoDataFrame(polygons, crs=geoproj)

# Calcular o comprimento de cada geometria
gdf['’comprimento_metros'] = gdf[' geometry’].length/100
print(gdff'comprimento_metros'])

# Filtrar poligonos com comprimento maior ou igual a “1 metro” (Depende do nivel de
escala que for trabalhar

gdf_filtered = gdf[gdf['’comprimento_metros'] >= 1]
print(gdf_filtered)
# Calcular o diametro (DAP) com base na largura da geometria do objeto (poligono)

gdf filtered['DAP'] = (gdf filtered['geometry’].apply(lambda geom: geom.bounds|2] -
geom.bounds|[0]))/10

print(gdf_filtered['DAP')

# Calcular o comprimento em metros (s6 para reordenar)

gdf _filtered['comprimento_metros'] = gdf _filtered['geometry'].length/100
print(gdf_filtered['comprimento_metros'])

#Contagem de toras

# Definir o valor minimo de comprimento desejado (em metros)
comprimento_minimo = 1.0 # Altere conforme necessario

# Filtrar o DataFrame gdf _filtered com base no comprimento minimo

toras_comprimento_superior = gdf filtered[gdf filtered['comprimento_metros] >
comprimento_minimo]

# Contar o niumero de toras com comprimento superior ao valor minimo
numero_toras_comprimento_superior = len(toras_comprimento_superior)
# Exibir o nUmero de toras com comprimento superior ao valor minimo

print("Numero de toras com comprimento superior a", comprimento_minimo,
"metros:"”, numero_toras_comprimento_superior)

# Calcular a area basal para cada geometria linear filtrada

gdf_filtered['AreaBasal] = ((np.pi * ((gdf_filtered['DAP'] / 2)**2))/40000) # Area basal
em m?
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print(gdf_filtered['AreaBasal'])
# Calcular o volume para cada geometria linear filtrada

gdf filtered['Volume'] = gdf _filtered['AreaBasal’] *
(gdf_filtered['comprimento_metros’]) # Volume em metros cubicos

print(gdf_filtered['Volume')
# Calcular o somatério de area basal e volume para toda a imagem
soma_area_basal = gdf filtered['AreaBasall.sum() # Somatorio da area basal em mz

soma_volume = gdf filtered['Volume'].sum() # Somatoério do volume em metros
cubicos

# Criar um dicionario com os dados que serao inseridos na tabela de atributos do Excel
dados_excel ={

‘Comprimento (metros)": gdf filtered['comprimento_metros'],

‘Area Basal': gdf_filtered['AreaBasal’],

‘Volume': gdf_filtered['Volume',

‘NUumero de Toras (comprimento > 1m)": [numero_toras_comprimento_superior] *
len(gdf_filtered)

}

# Converter o dicionario em um DataFrame
df_excel = pd.DataFrame(dados_excel)

# Salvar o DataFrame em um arquivo Excel

caminho_excel = r'C:\caminho\para\o\diretorio\dados_toras.xIsx' # Altere o caminho
conforme necessario

df_excel.to_excel(caminho_excel, index=False)

print("Tabela de atributos salva em:", caminho_excel)

#Verificar o volume e area basal total da imagem
print("Somatorio de Area Basal:", soma_area_basal, "m?/ha")

print("Somatorio de Volume:", soma_volume, "m3/ha")

# Influéncia das bandas espectrais da imagem na segmentacao de objetos - Definir
gual tem maior intensidade

# Carregue a imagem colorida

image = cv2.imread(path_img93) # Substitua pelo nome do caminho de sua imagem
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# Divida a imagem em suas bandas RGB
blue, green, red = cv2.split(image)
# Aplique o detector de bordas Canny em cada banda separadamente

canny_blue = cv2.Canny(blue, 100, 200) # Ajuste os parametros conforme o tipo de
atributo e imagem de trabalho (mesmo valor da etapa de deteccéo de bordas)

canny_green = cv2.Canny(green, 100, 200)

canny_red = cv2.Canny(red, 100, 200)

# Calcule a média das intensidades de borda em cada banda
mean_intensity blue = np.mean(canny_blue)

mean_intensity _green = np.mean(canny_green)

mean_intensity red = np.mean(canny_red)

# Crie um grafico de barras para mostrar as influéncias das bandas

bandas = ['Azul', 'Verde', 'Vermelho']

intensidades = [mean_intensity_blue, mean_intensity_green, mean_intensity red]
plt.bar(bandas, intensidades)

plt.xlabel('Banda RGB")

plt.ylabel('Intensidade Média de Borda'")

plt.title('Influéncia das Bandas RGB na Segmentacéo de Objetos (Canny Edge)’)
plt.show()
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