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RESUMO 

 

MARCELINO, Reginaldo Arthur Glória, M.Sc., Universidade Federal de Viçosa, 
dezembro de 2023. Identificação e quantificação de resíduos madeireiros pós-
colheita florestal usando segmentação de imagens. Orientador: Alexandre Simões 
Lorenzon. Coorientadores: Gustavo Eduardo Marcatti e Ernani Lopes Possato. 
 
 
No âmbito das atividades florestais, a colheita florestal surge como a operação mais 

onerosa na produção de madeira, superando potencialmente 50% do valor total da 

madeira na fábrica. Os resíduos de madeira, deixados no campo, representam uma 

perda econômica substancial, entre 2% e 15% do volume total de madeira comercial. 

Nesse contexto, o emprego de sensores embarcados em aeronave remotamente 

pilotada surge como uma solução inovadora para a identificação e mensuração 

desses resíduos florestais. Assim, o presente estudo se propôs a desenvolver uma 

metodologia para identificar e quantificar resíduos madeireiros pós-colheita, 

considerando dimensões comerciais (comprimento > 3 m e diâmetro > 4 cm), por meio 

de imagens de alta resolução espacial capturadas por Aeronave remotamente 

pilotada. A pesquisa foi conduzida em áreas específicas de plantios comerciais de 

eucalipto no estado de São Paulo, Brasil, sob dois sistemas de colheita florestal tora 

curta e tora longa. As imagens foram adquiridas por aeronave remotamente pilotada 

em RGB, em três alturas diferentes, para tora curta (60, 90 e 120 m) e tora longa (40, 

60 e 80 m). Foi desenvolvido um algoritmo (script) em Python por meio da biblioteca 

OpenCV, com aplicação de técnicas para segmentação de bordas e detecção de 

objetos. A validação de campo foi realizada com alocação de parcelas circulares na 

proporção 1:1ha, e a cubagem pelo método Smalian para cálculo dos desvios 

volumétricos. A acurácia das imagens com as toras identificadas foi avaliada pelo 

índice AcATaMa para classificação (0 - Não resíduo e 1 Resíduo). A metodologia foi 

eficiente para identificação e quantificação dos resíduos, em que, as alturas de 120 m 

para toras curtas e 80 m para toras longas apresentaram as melhores acurácias, 

atingindo valores de 0,88 e 0,85, respectivamente, e ainda com desvios volumétricos 

percentuais inferiores a 2,5%. Foi observado um padrão de quanto menor o tamanho 

do pixel mais complexo a detecção dos objetos pelo algoritmo. Essa análise tem 

impacto direto na eficiência operacional de aquisição de imagens por Aeronave 

remotamente pilotada, devido a aumentar o rendimento em hectares avaliados. A 



 

 
 
diversidade nas dimensões dos resíduos destaca a necessidade de ajustes 

específicos no algoritmo para garantia da identificação precisa de toras para cada 

sistemas de colheita. No sistema de toras curtas, cerca de 84% do volume total é 

composto por toras com comprimentos superiores a 3 metros, enquanto no sistema 

de toras longas esse valor é aproximadamente 68%. Os filtros de suavização, foram 

cruciais para o sucesso do processamento do algoritmo, quanto a identificação precisa 

das toras nas imagens, devido ao aumento da precisão na etapa de detecção de 

bordas. Essa abordagem de Análise de Objetos Baseada em Imagem (OBIA) em 

ambiente Python mostrou-se promissora, ao abrir oportunidades de melhorias 

contínuas da automatização dessas atividades de inventário florestal de resíduos por 

imagem. Os resultados obtidos destacam a flexibilidade, reprodutibilidade e 

aplicabilidade desta metodologia no monitoramento de áreas colhidas, ao promover a 

implementação de ações para melhoria da gestão de qualidade nas operações de 

colheita e silvicultura subsequentes. 

 
Palavras-chave: Geotecnologia; Gestão de qualidade; Monitoramento; Algoritmo; 

Segmentação de objetos; 

 

  



 

 
 

ABSTRACT 

 

MARCELINO, Reginaldo Arthur Glória, M.Sc., Universidade Federal de Viçosa, 
December, 2023. Identification and quantification post-harvest forests wastes 
using image segmentation. Adviser: Alexandre Simões Lorenzon. Co-advisers: 
Gustavo Eduardo Marcatti and Ernani Lopes Possato. 
 
 
In the context of forestry activities, forest harvesting emerges as the costliest operation 

in timber production, potentially exceeding 50% of the total timber value at the factory. 

Forest wastes left in the field represent a substantial economic loss, ranging from 2% 

to 15% of the total volume of commercial wood. In this scenario, the use of sensors 

mounted on drone emerges as an innovative solution for the identification and 

measurement of these forest residues. Therefore, this study aimed to develop a 

methodology to identify and quantify post-harvest forests wastes, considering 

commercial dimensions (length > 3 m and diameter > 4 cm), through high spatial 

resolution images captured by drone. The research was conducted in specific areas of 

commercial eucalyptus plantations in the state of São Paulo, Brazil, under two forest 

harvesting systems: Cut-To-Length and Tree Length. Images were acquired by drone 

in RGB, at three different heights for Cut-To-Length (60, 90, and 120 m) and Tree 

Length (40, 60, and 80 m). A Python algorithm was developed using the OpenCV 

library, applying techniques for edge segmentation and object detection. Field 

validation was performed by allocating circular plots in a 1:1 ha ratio, and volume 

discrepancies were calculated using the Smalian method. The accuracy of images with 

identified logs was evaluated using the AcATaMa index for classification (0 - No 

residue and 1 - Residue). The methodology was efficient for the identification and 

quantification of forest wastes, with heights of 120 m for Cut-To-Length and 80 m for 

Tree Length presenting the highest accuracies, reaching values of 0.88 and 0.85, 

respectively, with volumetric percentage discrepancies below 2.5%. A pattern was 

observed where the smaller the pixel size, the more complex the object detection by 

the algorithm. This analysis has a direct impact on the operational efficiency of drone 

image acquisition, as it increases the yield in evaluated hectares. The diversity in 

forests wastes dimensions highlights the need for specific adjustments in the algorithm 

to ensure accurate log identification for each harvesting system. In the Cut-To-Length 

system, about 84% of the total volume consists of logs longer than 3 meters, while in 



 

 
 
the Tree Length system, this value is approximately 68%. Smoothing filters were 

crucial for the success of the algorithm processing, enhancing precision in the edge 

detection phase and ensuring accurate log identification in the images. This Object-

Based Image Analysis (OBIA) approach in the Python environment has proven 

promising by opening opportunities for continuous improvement in the automation of 

forest wastes inventory through imagery. The results underscore the flexibility, 

reproducibility, and applicability of this methodology in monitoring harvested areas, 

promoting the implementation of actions to enhance quality management in 

subsequent harvesting and silviculture operations. 

 
Keywords: Geotechnology; Quality management; Monitoring; Algorithm; Object 

segmentation;   
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1. INTRODUÇÃO 

 

 

Dentre as atividades florestais, a colheita florestal é a operação de maior custo 

à madeira posta na fábrica, com potencial de ultrapassar 50% do valor da madeira. As 

atividades de colheita incluem corte, extração, carregamento da madeira nos veículos 

de transporte e demais operações que venham a ocorrer no talhão florestal (Machado 

et al. 2014; Nakahata et al. 2014). Diversas variáveis podem influenciar o desempenho 

e a qualidade dessas operações, sendo identificadas por meio de estudos com 

estimativas da produtividade, eficiência e custos, além do que o custo médio da 

madeira extraída tende a aumentar proporcionalmente ao desperdício de madeira em 

campo (Barreto et al. 1998; Simões & Fenner, 2010; Rotili et al. 2022).  

O desperdício de madeira ao longo da atividade de colheita, ocorre 

principalmente quando parte do material lenhoso de interesse eventualmente é 

deixada no campo, e a perda econômica pode variar entre 2 e 15% do volume de 

madeira comercial colhida no talhão (Nakahata et al. 2014; Serpe et al. 2018). Mesmo 

com todos os cuidados nas especificações, ainda pode-se ter volume significativo de 

resíduos lenhosos com potencial de serem convertidos em matéria prima, sejam para 

fins energéticos e/ou celulósicos (Kizha & Han, 2016; IBA, 2023; 2023a). 

Os resíduos madeireiros podem estar na forma de: tocos, toras de dimensões 

comerciais, ponteiros de fuste, toras ou feixes de madeira deixados inadvertidamente 

dentro do talhão ou concentrados na beira das estradas, toras quebradas ou mortas 

(Machado et al. 2014; Kizha & Han, 2016). Além de não gerar receita, toda essa 

madeira residual prejudica a movimentação das máquinas que realizam as operações 

posteriores de silvicultura, como preparo do solo e de plantio; logo, aumentam-se os 

custos dessas atividades (De Graaf et al. 2003; Kizha & Han, 2016).   

A identificação e quantificação dos resíduos florestais são cruciais para 

orientar iniciativas de aprimoramento da eficiência das operações em campo, a fim de 

garantir a redução de custos e perdas durante a colheita e transporte da madeira. No 

entanto, o método tradicional de quantificação dos resíduos em campo é complexo, 

demorado e dispendioso, ao exigir que equipes percorram o talhão para identificar, 

classificar e mensurar os resíduos de madeira. Realizar um censo pós-colheita com 

esses métodos convencionais ou mesmo a amostragem em grade, que é desenhar 

manualmente as dimensões da tora, é impraticável devido ao alto custo e tempo 
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envolvido. Além disso, essas abordagens apresentam margens de erro significativas, 

o que compromete a precisão dos resultados e prolonga o processo de análise, 

prejudicando as abordagens da gestão de qualidade. 

Contudo o uso de geotecnologias para identificação e quantificação dos 

resíduos, por meio de aquisição remota de imagens são alternativas viáveis do ponto 

de vista operacional e econômico para a redução de custos nas atividades de campo 

(Sowa, 2014; Oliveira et al. 2020). Além do aprimoramento da gestão da qualidade 

pois reduz o tempo de medição quando comparado ao método tradicional de medição 

in situ (Ståhl et al. 2001; Kizha & Han, 2015; Shokirov et al. 2021). 

A utilização de sensores embarcados em Aeronave remotamente pilotada 

abre novas perspectivas para a quantificação dos resíduos florestais. Essa 

abordagem é altamente eficaz porque fornece informações detalhadas sobre as 

características dos materiais presentes nas imagens. Essa técnica não se limita 

apenas a contextos florestais, mas pode ser aplicada em uma variedade de áreas, 

incluindo mapeamento urbano, rural, geológico e agrícola de precisão. Essa 

abordagem possibilita monitoramento constante dos resíduos, além de contribuir para 

a indicação de áreas críticas com elevado desperdício de madeira, ao gerar 

percepções importantes na melhoria da gestão de qualidade em processos florestais 

nas empresas (Santos & Faria, 2017; Braz et al., 2017; Bargos & Matias, 2018; 

Embrapa, 2019; Dainelli et al. 2021; 2021a; Tupinambá-Simões et al. 2022; Dias et 

al., 2020; Dainelli et al. 2021; 2021a).  

Assim, o presente projeto teve como objetivo identificar e quantificar resíduos 

madeireiros pós-colheita florestal com dimensões comerciais (> 3 m de comprimento 

e > 4 cm de diâmetro) com uso de técnicas de segmentação de imagens de alta 

resolução espacial oriundas de Aeronave remotamente pilotada, sob dois sistemas de 

colheitas distintos toras curtas e toras longas numa área de plantio comercial de 

eucalipto. Acrescido disso, teve como foco central servir como fonte de inovação, e 

formular uma tecnologia replicável e adaptável a diferentes situações a fim de gerar 

novas rotas e direcionamentos multidisciplinares ao integrar técnicas do 

sensoriamento remoto e manejo florestal na gestão de qualidade florestal.  
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2. REVISÃO DE LITERATURA 

 

 

2.1 A colheita florestal  

2.1.1 Apresentação geral 

A colheita compreende um dos componentes principais da produção florestal 

e tem por objetivo preparar e levar a madeira até o local de transporte para o pátio 

industrial. Para o planejamento da colheita, há variáveis multidisciplinares envolvidas 

a fim de obter resultados sustentáveis e viáveis economicamente, que equilibram os 

aspectos econômicos, sociais e ambientais, ao proporcionar benefícios duradouros 

para as comunidades, empresas e o meio ambiente (Strang, 1983; Dykstra & Heinrich, 

1996; Machado, 2014; Mac Donagh et al. 2017; Poudyal et al. 2018 Marchi et al. 2018; 

Vasconcelos & Silva Junior, 2021).  

Até o beneficiamento da madeira, a colheita é a etapa com maior custo para 

as empresas florestais, ultrapassando em alguns casos 50% do total das despesas 

de produção e interfere diretamente na qualidade dos produtos gerados nos 

processos industriais. O que demandam de novos meios quanto a métodos de 

aproveitamento e reaproveitamento, redução de custos e eficiência operacional a fim 

de gerar menos gastos para a companhia (Machado, 2014; Mac Donagh et al. 2017; 

Diniz et al. 2020).  

 

2.1.2 Sistemas de colheita florestal na geração de resíduos 

O sistema de colheita florestal é caracterizado como um conjunto integrado de 

atividades com finalidade de melhorar a utilização eficiente de recursos humanos e 

materiais na extração de materiais lenhosos e seus derivados, e garantia de um fluxo 

contínuo de madeira de forma segura e economicamente viável (Drolet & LeBel, 2010; 

Machado, 2014). Esse processo envolve discussões abrangentes nos aspectos de 

segurança do trabalho, técnicos operacionais, silviculturais, ergonômicos, ambientais 

e sociais.  

O objetivo central da organização em sistema de colheita é para evitar 

possíveis gargalos e déficits na produção e oferta de madeira, na interrupção na 

cadeia produtiva e suprimento, além da garantia na qualidade e sustentabilidade do 

processo de colheita florestal (Drolet & LeBel, 2010; Machado, 2014; Häggström & 

Lindroos, 2016; Poudyal et al. 2018). As principais etapas da colheita florestal que 
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podem vir a gerar resíduos madeireiros no talhão são: corte (derrubada, 

desgalhamento, cavaqueamento, descascamento e traçamento); e extração 

(extração, arraste, empilhamento e carregamento), para posterior transporte da 

madeira (logística de transferência realizada para o pátio da indústria) (Machado, 

2014). 

Os sistemas de colheita podem variar de acordo com o estado e forma da 

matéria prima utilizada em relação ao padrão da empresa, com o local onde é feito as 

etapas de corte e processamento inicial da madeira, com o grau de mecanização e 

com o tempo entre corte e carregamento da madeira que é conhecido como quente 

ou frio (Machado, 2014; Guerra et al. 2016; Junior et al. 2016; Fiedler et al. 2017). 

Dentre os principais maquinários utilizados nas empresas para a etapa da colheita 

estão: Harvester, Feller, Feller-Buncher, Forwarder, Slingshot, Skidder, Garra-

traçadora, Delimber e demais gruas, e outros tratores e maquinários adaptados ao 

objetivo-sistema da empresa. No setor florestal brasileiro, cinco sistemas de colheita 

são usualmente empregados (Machado, 2014; Guerra et al. 2016; Junior et al. 2016; 

Fiedler et al. 2017; Sanei Bajgiran et al. 2017; Mac Donagh et al. 2017; Miyajima et al. 

2021; Oro et al. 2021; Rocha et al. 2022), são eles:  

Sistema de toras curtas (Cut-To-Length): mais empregado no País, 

principalmente no setor da celulose. O Harvester e Forwarder são as máquinas mais 

utilizados nesse sistema. Devido ao processamento ser todo no local de colheita das 

árvores, a geração de resíduos se espalha por todo talhão, a depender da qualidade 

da operação e característica do terreno. Dentre os resíduos mais comuns deste 

sistema estão as cascas, galhos, copas e toras das árvores com diferentes 

comprimentos e diâmetros. 

Sistema de toras longas-compridas (Tree Length):  a árvore é derrubada 

usando Feller ou Feller-Buncher e apenas semiprocessada (desgalhada e destopada) 

no local de corte por uma garra traçadora, o que centraliza os feixes de casca e 

ponteiras numa linha oposta aos feixes de tora. O acabamento da madeira (p.e., 

descascamento, toragem, seleção-qualificação) é executado na estrada ou em um 

pátio temporário de processamento. Devido a essa organização, há uma 

concentração de toras na linha de corte, com toras maiores e com casca ao longo do 

sentido da linha de corte e da derrubada. 

Sistema de árvores inteiras (Full Tree): a árvore é derrubada e extraída para 

um pátio intermediário ou estrada sem ser desgalhada e traçada. O acabamento da 
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madeira (desgalha, descascamento, toragem e seleção) é executado na estrada ou 

em um pátio intermediário de processamento. Os maquinários mais utilizados são 

Feller ou Feller-Buncher para corte e derrubada, e uma garra traçadora para 

processamento que vai variar com o emprego da madeira. 

Sistemas de árvores completas (Whole Tree): a árvore é arrancada, o qual 

inclui parte de seu sistema radicular e posterior extraída para a beira da estrada ou 

pátio temporário, onde é realizado o seu processamento. O emprego do Feller-

Buncher para arrancar toda árvore com mais presença de raiz possível, pois em sua 

maioria das vezes é um sistema adotado em madeiras para biomassa de carvão 

vegetal, o uso de Skidder para baldeio e garras traçadoras para processamento. 

Sistema de cavacos de madeira (Chipping): A árvore é derrubada e pode ser 

processada no local de derrubada com uso do Feller ou Feller-Buncher ou Harvester, 

é extraída na forma de cavacos, diretamente para a margem da estrada ou pátio com 

auxílios de picadores e garra traçadoras para estocagem ou transporte diretamente 

para pátio da indústria. No geral, há três subsistemas: cavaqueamento integral, 

cavaqueamento parcial com casca, e cavaqueamento parcial sem casca. 

Cada sistema de colheita exerce diferentes impactos na geração dos resíduos 

florestais, além de influenciar diretamente a fertilidade do solo, o desempenho das 

máquinas, os custos operacionais da empresa, a disponibilidade de coprodutos e as 

oportunidades derivadas do aproveitamento desses resíduos (Thiffault et al. 2014; 

Legout et al. 2020). Kizha & Han, (2016) avaliaram que as etapas da separação e o 

processamento de resíduos florestais nos talhões aumentam o custo global da 

operação de colheita florestal em 10%, contudo esse valor foi inferior ao que os 

resíduos no campo representam para as demais operações e a perda econômica em 

razão do não aproveitamento do volume de madeira desperdiçado. 

 

2.1.3 Gestão de Qualidade na colheita florestal 

A gestão ou controle de qualidade pode ser conceituada como um sistema 

amplo, complexo e que abrange todas as áreas da empresa, em um esforço comum 

e cooperativo, a fim de estabelecer, otimizar e assegurar a qualidade da produção e 

operação, em níveis de viabilidade econômica, além de priorizar as necessidades dos 

clientes e consumidores (Jacovine et al. 2005; Rotili et al. 2022). O setor florestal 

competitivo e sustentável busca se diferenciar do ponto de vista da qualidade de seus 

produtos e processos operacionais sem elevar os custos de produção (Jacovine et al. 
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1999; Jacovine et al. 2005). Assim, inúmeras ferramentas de gestão da qualidade 

podem ser empregadas em conjunto de ações nas atividades operacionais de campo 

na atividade da colheita florestal a depender do tipo de madeira, das equipes 

responsáveis, do tipo de maquinário e gestão adotada. Logo, as atividades da colheita 

devem estar integradas, a fim de proporcionar os melhores custos em eficiência e 

oportunidades para melhoria contínua no desenvolvimento de novos produtos e 

processos nas operações florestais. Assim, corroborar na gestão das operações, 

reduzir riscos de falhas e auxiliar as organizações na tomada de decisões em tempo 

hábil para atingir seus objetivos (Silva Oliveira et al. 2019). 

Do ponto de vista histórico, a adoção da gestão de qualidade no setor florestal 

ocorreu de forma gradual em comparação com outros setores. O primeiro modelo 

surgiu na década de 80, seguido por um segundo modelo na década de 90 (De Freitas 

et al., 1980; Trindade, 1993). Atualmente, observa-se um aumento significativo do 

interesse nessa abordagem, impulsionado por diversas razões, tais como as 

necessidades dos clientes, a competição internacional decorrente da ampla 

disponibilidade de produtos no mercado, o alinhamento com os Objetivos de 

Desenvolvimento Sustentável (ODS) estabelecidos pelas Nações Unidas, conforme 

destacado no relatório do IBA (2023 e 2023a), a busca por redução de custos 

operacionais e o aprimoramento da qualidade do produto. 

Na atualidade, a maioria das empresas florestais reconhece as oportunidades 

de melhoria contínua nos processos produtivos, resultantes da implementação de 

técnicas de gestão da qualidade em todas as etapas das operações, desde a 

silvicultura até a colheita, logística e outras atividades relacionadas (Jacovine et al., 

1999; Jacovine et al., 2005; Vasconcelos & Silva Junior, 2021; IBA, 2023; 2023a). 

Essa tendência reflete o compromisso crescente do setor florestal com a eficiência 

operacional, a excelência no atendimento ao cliente e a sustentabilidade ambiental. 

A gestão da qualidade na colheita florestal acontece, principalmente, na 

aplicação de ferramentas de acompanhamento e controle dos processos em tempo 

real da operação, com intuito de fomentar a inovação frente a melhorias contínuas, 

seja em ações preventivas, corretivas ou paliativas, para curto e longo prazo nas 

operações florestais (Sowa, 2014; Oliveira et al. 2020). Os indicadores da gestão de 

qualidade estão baseados em quatro pilares: avaliação, prevenção e presença de 

falhas internas ou externas, que fomentam os planos de ações das atividades na 
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colheita florestal, com a garantia de conformidade em suas atividades operacionais 

de campo (Oliveira et al. 2020; Rotili et al. 2022).  

Contudo, a melhoria das operações de colheita só pode ser obtida se houver 

um sistema de controle de qualidade integrado e implementado na empresa como 

valor cultural (Jacovine et al. 2005). O que, demanda um planejamento horizontal 

constante dentre os setores da colheita florestal, como citados nos seguintes estudos 

de: Drolet & LeBel, (2010), Häggström & Lindroos, (2016), Spinelli et al. (2019), Visser 

& Obi, (2021). Além disso, estudos apontam que, qualquer inferência nos custos da 

colheita, seu impacto na receita é inversamente proporcional, ou seja, diminui 

consideravelmente o percentual de custo no valor final da madeira em mais de 10%, 

sendo eles: Grasso, (1998), Augustynczik et al. (2016), Silva et al. (2016), Ferreira et 

al. (2018), Simioni et al. (2018), Sales et al. (2019), Santos et al. (2019), Gama et al. 

(2022), e outros.  

Associado a isso, a avaliação dos resíduos madeireiros nas atividades pós-

colheita florestal tem fundamental importância, pois permite identificar as principais 

areas, módulos de corte e ou materiais genéticos que apresentam uma predisposição 

desse desperdício (Rotili et al. 2022). 

 

2.2 Geotecnologias  

2.2.1 Sensoriamento remoto 

O Sensoriamento Remoto é a área do conhecimento em que são estudados 

métodos para obter informações dos objetos, áreas ou fenômenos por meio de dados 

adquiridos de sensores, os quais não devem ter contato direto para com o objeto, área 

ou fenômeno; ou seja, obter imagens e dados a distância (Hunt Jr & Daughtry, 2018; 

Woodcock et al. 2020; Wellmann et al 2020; Piovan, 2020; Dupuis et al. 2020; INPE, 

2023). Os sensores podem ser agrupados em passivos ou ativos, sensores 

imageadores ou não imageadores; sistema de varredura, quadro ou fotográfico (INPE, 

2023). 

As informações obtidas pelas imagens desses sensores estão interligadas 

aos atributos e distintas bandas espectrais (comprimentos de onda), radiância, 

resoluções radiométricas, temporais ou espaciais que interage de acordo com alvos 

sob diferentes composições-óticas, como por exemplo: na vegetação, solo, água, 

edificações, dentre outros (Piovan, 2020). Tais dados são importantes para as etapas 

do Processamento Digital das Imagens – PDI, com objetivos de aprimorar a qualidade 
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dos dados e imagens; automatizar processos; integrar dados; facilitar a interpretação 

das imagens; modelar produtos e coprodutos de interesse, sob os pilares econômicos, 

sociais, ambientais e científicos do usuário e instituição responsável (Hengl, 2019; 

Woodcock et al. 2020; Piovan, 2020; INPE, 2023). 

 

2.2.2 Uso de aeronave remotamente pilotada para coleta de imagens 

Os Veículos aéreo não tripulado, ou Aeronave Remotamente Pilotada, são 

alternativas vantajosas para levantamentos, monitoramentos e mapeamentos de 

ecossistemas de forma remota em estudos de escala detalhada. Atualmente o uso 

desse equipamento permite o monitoramento responsivo, imediato, oportuno e mais 

“econômico” de fenômenos como da identificação dos resíduos pós-colheita nos 

talhões de plantio florestal (Zhang et al. 2016; 2016a). O tipo e tamanho da aeronave 

remotamente pilotada varia com o uso da pesquisa e sensor embarcado, contudo 

algumas partes são essenciais para seu bom funcionamento e coleta de informações, 

como: bateria, motor, asas, controlador eletrônico de velocidade (ESC-Eletronic 

Speed Controller), placa controladora (GPS e giroscópio), câmera, sensores, Ailerons, 

Elevadores, Leme, carga útil e trem de pouso. 

Atualmente são desenvolvidas pesquisas científicas em diferentes áreas do 

conhecimento e objetivos, como: diagnose ambiental, manejo e capacidade do uso da 

terra, detecção e monitoramento de desmatamento ambiental e mudança climática, 

desenvolvimento e aprimoramento do pensamento espacial (mapeamento de áreas, 

contribuição para obtenção de agricultura sustentável, mapeamento do risco de 

ocorrência de incêndios florestais, estimativa e dinâmica da biomassa, estoque de 

carbono, atividades relacionadas ao inventário florestal, colheita e transporte florestal; 

dentre inúmeros outros (Zhang et al. 2016; 2016a; Santos & Faria, 2017; Braz et al., 

2017; Bargos & Matias, 2018; Talbot et al. 2018; Hunt Jr & Daughtry, 2018; Embrapa, 

2019; Zgraggen, 2019; Dias et al., 2020; Bourgoin et al. 2020; Sun et al. 2021; Dainelli 

et al. 2021; 2021a; Tupinambá-Simões et al. 2022).  

Acrescido disso, o emprego do Aeronave remotamente pilotada para obter 

imagens de alta resolução espacial tem fundamental importância no planejamento das 

atividades da colheita florestal, com finalidade de aumentar o rendimento operacional 

e de produtividade (Baena et al. 2018; Wu et al. 2019; Windrim et al. 2019; Marra et 

al. 2021; Tanut et al. 2021; Ferreira et al. 2021). 
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As aeronaves remotamente pilotadas oferecem vantagens significativas 

devido à sua habilidade de voar em altitudes mais baixas em comparação com 

plataformas orbitais. Isso resulta na aquisição de imagens com resolução espacial 

muito alta, variando de 0,5 a 10 centímetros numa maior resolução temporal. Essa 

capacidade possibilita a coleta eficiente de dados de plantas e animais, fornecendo 

destaques valiosos sobre suas interações com o ambiente. Além disso, as aeronaves 

remotamente pilotada demonstram eficácia notável na detecção e medição de 

propriedades no dossel da floresta, bem como na identificação de resíduos 

madeireiros no talhão (Zhang et al. 2016; 2016a). Em suma, os Aeronave 

remotamente pilotada equipados com sensores de câmera atuam em áreas remotas 

de difícil acesso, o que tornam ainda mais vantajoso quanto ao seu uso (Piovan, 

2020). 

Entretanto, para garantir a conformidade legal e a segurança durante missões 

ou voos com aeronaves remotamente pilotadas, é essencial seguir as 

regulamentações estabelecidas por instituições como a Agência Nacional de Aviação 

Civil (ANAC) e a Agência Nacional de Telecomunicações (ANATEL). Isso inclui a 

obtenção de autorizações de voo do Departamento de Controle do Espaço Aéreo 

(DECEA) e do Sistema de Acesso de Aeronaves Remotamente Pilotadas 

(SARPAS/RPAS), além do cumprimento de normas específicas e da elaboração de 

um manual de voo detalhado. Paralelamente, é crucial realizar uma avaliação de 

riscos abrangente antes de cada operação, considerando fatores como condições 

meteorológicas, presença de obstáculos e potenciais interferências. Além disso, é 

obrigatório contratar um seguro RETA para cobrir eventuais danos a terceiros durante 

a atividade, garantindo a conformidade legal e protegendo tanto os operadores quanto 

o público em geral (ANAC, 2022; ANATEL, 2022; DECEA, 2022; 2022a).  

 

2.3 Classificação de imagens digitais 

2.3.1 Técnicas de classificação de imagens 

A classificação de imagens no sensoriamento remoto refere-se ao processo de 

obtenção de rótulos ou categorias específicas para diferentes partes de uma imagem 

obtida por sensores remotos. Esse procedimento envolve a aplicação de técnicas para 

identificar e separar áreas ou objetos com características semelhantes, permitindo a 

interpretação e análise dos elementos presentes na cena capturada pelo sensor. A 

classificação de imagens é uma etapa crucial na seleção de informações específicas 
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a partir de dados de sensoriamento remoto, o que possibilita o entendimento e 

monitoramento de diversas informações na superfície terrestre (Haralick et al. 1973; 

Lu & Weng, 2007; Abburu & Golla, 2015; Ma et al. 2017; Lv & Wang, 2020; Imani & 

Ghassemian, 2020; Bhojanapalli et al. 2021).  

Este processo é essencial para a interpretação e análise de dados obtidos por 

sensoriamento remoto. Atualmente, destacam-se diversas abordagens para a 

classificação de imagens incluindo: Não supervisionada, Semi supervisionada, 

Supervisionada, Aprendizado Profundo, Híbrida (junção de metodologias), Análise 

orientada ao objeto, ou Fotointerpretação (Figura 01). Essa variedade de métodos 

reflete a complexidade e diversidade de aplicações na interpretação de imagens. 

 
Figura 01: Tipos de classificações de imagens e as subdivisões quanto às técnicas, 

diferenciações e principais algoritmos ou ferramentas utilizados. Fonte: Autor, (2023), 

adaptado de (Haralick et al. 1973; Lu & Weng, 2007; Abburu & Golla, 2015; Ma et al. 

2017; Lv & Wang, 2020; Imani & Ghassemian, 2020; Bhojanapalli et al. 2021). 

 

Há dois principais tipos de classificadores: por pixel que avalia pixels 

homogêneos por meio de probabilidades, distâncias e critérios de avaliação, 

subdivididos em estatísticos e determinísticos e por região que considera 

agrupamentos de pixels como unidade de trabalho com características semelhantes-

homogêneas. De forma geral, o tipo de classificação é definido por alguns fatores, 

como: o objetivo do usuário, a escala do local de estudo, a condição econômica da 
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empresa/grupo e as habilidades técnicas-científicas do analista (Lu & Weng, 2007; Lv 

& Wang, 2020). 

 

2.3.1.1 Fotointerpretação e os processos de classificação 

A fotointerpretação cabe principalmente da experiência do profissional seja no 

conhecimento prévio ou detalhado da área, quanto da técnica-científica 

correspondente as ferramentas do sensoriamento remoto disponíveis e de seus 

atributos estatísticos. É uma das principais etapas da classificação de imagens, 

quando se possibilita aplicar uma validação de campo em sua técnica empregada. 

Contudo, a forma de avaliação-validação dos processos de classificação se 

baseia principalmente na Verdade de campo versus a classificação final (imagem ou 

mapa da área), contudo, alguns fatores estatísticos ligados a acurácia e precisão são 

importantes, como: percentual de erro, matriz confusão, índice kappa, índice de 

desempenho geral e por classe (omissão e comissão), dentre outros que facilite o 

entendimento do modelo estabelecido (Lu & Weng, 2007; Foody, 2008; Lv & Wang, 

2020).  

Ainda referente a avaliação da classificação automática, os autores Cihlar et al. 

(1998) e De Fries e Chan (2000) propuseram alguns critérios fundamentais que devem 

satisfazer (quando aplicável e requerido), sendo eles: reprodutibilidade, robustez aos 

ruídos nos dados do treinamento, precisão, estabilidade do algoritmo, aplicabilidade 

uniforme, capacidade de utilizar plenamente o conteúdo informacional dos dados, e 

objetividade. Além disso, para uma boa classificação deve-se observar a forma de 

obtenção e seleção dos dados coletados pelos sensores.  

 

2.3.1.2 Classificação não supervisionada 

A classificação de imagem não supervisionada pode ser considerada a técnica 

mais indicada quando não se tem conhecimento prévio do local de pesquisa. 

Inicialmente o algoritmo agrupa os pixels em “clusters” com base em suas 

propriedades e características espectrais. Em seguida, classifica cada cluster com 

uma classe de uso e cobertura do solo que tenha características “semelhantes” (Paoli 

et al. 2009; Jian, 2012; Dhingra & Kumar, 2019; Lv & Wang, 2020). Os algoritmos mais 

comuns são os ISODATA, e K-média.  

 

2.3.1.3 Classificação supervisionada 
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Na classificação supervisionada, seleciona-se amostras representativas para 

cada classe de uso e cobertura do solo, assim, os algoritmos então utilizam esses 

“sítios de treinamento” as amostras de treinamento e os aplica à imagem inteira para 

gerar o produto classificado, baseado nas avaliações estatísticas dos atributos 

selecionados. Logo, para esse tipo de classificação faz-se necessário ter 

conhecimento profundo do algoritmo e métricas selecionadas ou conhecimento prévio 

da região estudada (baseado em campo ou literatura), a fim de conhecer as principais 

características da vegetação e solo, para auxiliar na divisão e definição de fronteiras 

entre as classes de amostragem e validação, a fim de diminuir erros e incertezas na 

classificação.  

As três etapas básicas principais para se ter essa classificação são: selecionar 

as amostras de treinamento, gerar um arquivo de assinatura (base) que é responsável 

por armazenar todas as informações e combinações espectrais para as amostras de 

treinamento, calibrar o modelo e classificar (Tuia et al. 2011; Zhang et al. 2016; 2016a; 

Jiang et al. 2016; Sima et al. 2018; Dhingra & Kumar, 2019; Lv & Wang, 2020). Os 

algoritmos mais comuns são: Máxima Verossimilhança, Regressão, Árvore de 

Decisão, dentre outros. 

Acrescido disso, atualmente as técnicas da aprendizagem profundo (Deep 

Learning), vêm sendo amplamente difundidas dentre os algoritmos supervisionados, 

com técnicas de aprendizado profundo derivados de uma Inteligência Artificial mais 

robusta e complexa, como o Yolo (Zhang et al. 2016; 2016a; He et al. 2019; Li et al. 

2019; Mou et al. 2020; Lv & Wang, 2020; Bhojanapalli et al. 2021). 

 

2.3.1.4 Classificação semi supervisionada 

A classificação semi-supervisionada surge como alternativa de suprir as 

demandas e “erros” gerados pela supervisionada e não supervisionada. Pois nela são 

utilizados dados rotulados e não rotulados durante o treinamento do classificador, 

assim compensa a falta de aprendizado do não supervisionado (falta de conhecimento 

prévio entre a relação das categorias agrupadas e reais) e do supervisionado (quando 

têm poucas amostras para os rótulos das classes).  

Assim, esse método de classificação é baseado em amostras de dados 

rotulados (pequena quantidade) e não rotulados no espaço de características, como 

forma de buscar melhor precisão nos resultados. Utiliza-se as máquinas de vetor de 

suporte, algoritmos baseados em grafos e autotreinamento, treinamento colaborativo 
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e treinamento triplo (Krishnapuram et al. 2004; Wang et al. 2015; Han et al. 2015; 

Yanping et al. 2015; Kipf & Welling, 2016; Lv & Wang, 2020; Wang & Du, 2021). 

 

2.3.1.5 Classificação orientada ao objeto - OBIA 

Na classificação orientada ao objeto - OBIA, o foco principal é gerar objetos 

segmentados com geometrias e características semelhantes, por meio de 

agrupamento de pixels (regiões), logo, não há pixels únicos, assim, indica-se trabalhar 

com imagens de alta resolução, pois possibilita maior detalhamento da área 

(Blaschke, 2010; Powers et al. 2012; Arvor et al. 2013; Blaschke et al. 2014; Ma et al. 

2017). As características que auxiliam na diferenciação dos objetos são:  

Geometria ou forma: classifica objetos de acordo com geometrias pré-

determinada ou uma estatística de forma, ou seja, testa a geometria de um objeto com 

a forma mais próxima que ele possui. 

Textura: pode ser de acordo com sua textura, que é a homogeneidade de um 

objeto.  

Espectral: um dos principais utilizados, pois se usa o valor médio das 

propriedades espectrais, como, infravermelho próximo, infravermelho de onda curta, 

vermelho, verde ou azul – RGB, dentre outras combinações espectrais disponíveis. 

Contexto e características geográficos: também pode ser considerado o 

contexto que estão empregados, ou seja, tais objetos têm relações de proximidade e 

distância entre vizinhos, assim se define características que podem ser utilizados 

nessa classificação. 

Na classificação OBIA, alguns algoritmos e bibliotecas são mais utilizados e ou 

já estão em maiores etapas de desenvolvimento, sendo eles: eCognition, Yolo, 

OpenCV, DeepForest, dentre outros. A segmentação pode variar de acordo com a 

técnica escolhida e subdividida em três grandes grupos, entretanto é essencial 

determinar a escala de segmentação apropriada a fim de obter resultados de 

segmentação otimizados e condizentes com a área avaliada, são eles: 

Baseada em descontinuidade: nessa técnica ela divide a imagem ao 

considerar as mudanças abrutas ou discrepantes (nos níveis de cinza), que pode ser 

feito através de uma matriz de convolução, que são responsáveis por detectar pontos 

isolados, bordas e linhas do objeto.  

Baseada em similaridade: já nesta o que é levado em consideração é o 

interior dos objetos, ou seja, analisa as propriedades similares nos pixels que pode 



30 

 

 

ser feito por: crescimento de regiões (responsável por agregar regiões-pixels vizinhos 

até não haver mais possibilidades, os quais possuem características similares), 

limiarização (neste já é realizado uma discretização dos dados-objetos por meio de 

histogramas, os quais possuem limiares de 1 ou 0, para separar objetos), detecção 

de bacias (esse utiliza de técnicas de ambos os métodos anteriores, pois ele detecta 

bordas e agrega regiões, o resultado é semelhante a um modelo digital de elevação e 

o limiar é definido pelo usuário, em que os objetos são criados), pirâmides (método 

mais radical, pois o algoritmo divide a imagem trabalhada em quadrantes arbitrários 

por meio da identificação dos pixels, em que são reconhecidos os objetos da imagem) 

e clustering (quando ocorre uma conversão da imagem em atributos (valores-pontos), 

e os objetos são definidos justamente pela separação das nuvens de pontos, a forma 

como se separa os agrupamentos são variados como o K-MÉDIAS). 

Baseada em objeto (multi resolução): nesse método a imagem pode ser 

segmentada sob diferentes características como sua forma, compacidade, suavidade, 

bordas, espectro, entorno (pixels vizinhos), dentre outros. O limiar (escala do objeto) 

é definido pelo usuário, em que a cor e forma define sua uniformidade e a escala seu 

tamanho.  

Acrescido disso, quando se tem imagens de baixa a média resolução espacial, 

tanto as técnicas tradicionais de classificação por pixel quanto em OBIA exercem 

muito bem suas respectivas funcionalidades dentro do contexto imposto, porém, 

quando se combinado uma imagem de altíssima resolução espacial, a OBIA é mais 

indicada, pois reduz o erro de identificação das classes (Cleve et al. 2008; Myint et al. 

2011; Addink et al. 2012; Tehrany et al. 2014; Blaschke et al. 2014).  

O contexto histórico do desenvolvimento das técnicas de Análise de Imagens 

Baseada em Objetos (OBIA) remonta ao início dos anos 2000, quando começou a ser 

intensivamente explorada. Desde então, houve um aumento significativo no interesse 

por essa abordagem, impulsionado não apenas pela evolução contínua dos sensores 

de imagem, tanto orbitais quanto terrestres, mas também pela crescente 

disponibilidade e diversidade de dados gerados por esses sensores. A proliferação 

desses dados, combinada com avanços na linguagem de programação e nas técnicas 

de inteligência artificial, tem estimulado um aprofundamento dos estudos e uma ampla 

aplicação da OBIA em diversos campos, incluindo universidades e empresas do setor 

geoespacial.  



31 

 

 

Essa convergência de fatores tem contribuído para a consolidação da OBIA 

como uma ferramenta poderosa para análise e interpretação de imagens, 

impulsionando sua adoção e desenvolvimento em várias áreas das geotecnologias 

(Blaschke & Strobl, 2001; Lu & Weng, 2007; Blaschke, 2010; Ma et al. 2017; Imani & 

Ghassemian, 2020). Com isso a técnica OBIA só vem a ganhar e espaço no cenário 

Internacional e Nacional nas atividades da engenharia florestal (Ma et al. 2017), 

principalmente quando se observa o atual cenário brasileiro das indústrias florestais.  

 

2.4 Técnicas de segmentação e detecção de objetos 

2.4.1 Biblioteca OpenCV – conceituação 

A utilização de geotecnologias em conjunto com softwares de automação 

computacional ganha destaque crescente nas pesquisas brasileiras. Esse destaque é 

atribuído à sua aplicabilidade versátil, capacidade de reprodução dos resultados, 

robustez das soluções propostas e à natureza do código aberto, o que possibilita sua 

implementação em diversas áreas de estudo. 

O R e Python emergem como escolhas proeminentes no setor florestal. Essa 

preferência se justifica devido a vários motivos, como a sua capacidade de incorporar 

e adaptar uma ampla gama de funções e bibliotecas gratuitas da linguagem de 

programação, inclusive de sua multidisciplinaridade e diversidade nas funcionalidades 

quanto às funções e pacotes disponíveis. Além disso, são amplamente empregados 

em empresas do setor florestal. Sua utilização promove o aprimoramento da 

produtividade, sustentabilidade e eficácia dos processamentos de dados, 

notadamente aqueles provenientes de imagens capturadas por Aeronave 

remotamente pilotada. A colaboração para o desenvolvimento conjunto e a ênfase na 

ciência de dados reproduzível e adaptável, de acesso aberto, são características 

adicionais que consolidam a posição desses softwares como pilares fundamentais no 

contexto florestal e demais setores industriais (R, 2023; Python, 2023).  

Nesse sentido, o OpenCV - Open Source Computer Vision Library (OpenCV; 

2023), como biblioteca de linguagem computacional e aprendizado de máquina de 

código aberto, veio para fornecer uma infraestrutura aplicável e revolucionária para 

diversos aplicativos de visão computacional além de acelerar o uso da percepção do 

algoritmo nos produtos e ou objetos da imagem. É um produto licenciado Apache 2 o 

que o torna sua utilização e modificação de código pelas empresas mais fácil e 

iterativa. Devido a gama de possibilidades de algoritmos do OpenCV, são utilizados 
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para detectar e reconhecer rostos, identificar e detectar objetos, classificar ações 

humanas em vídeos, rastrear movimentos de câmeras, rastrear objetos estáticos e 

em movimento, dentre outros (OpenCV; 2023). 

Ao considerar a previsão da biblioteca OpenCV na detecção de objetos, foi 

escolhido para realizar o reconhecimento de resíduos madeireiros pós-colheita 

florestais que pode se destacar diante das atividades de identificação, localização e 

mensuração das toras remanescentes no talhão. As utilidades e aplicabilidades do 

OpenCV são evidentes, pois oferece interfaces para C++, Python, Java e MATLAB, o 

que abrange uma ampla gama de linguagens de programação. Além disso, sua 

compatibilidade com sistemas operacionais como Windows, Linux, Android e Mac OS 

confere-lhe uma aplicabilidade robusta em diferentes ambientes de desenvolvimento. 

 

2.4.2 Biblioteca OpenCV – Detecção de bordas (Canny) 

O algoritmo Canny Edge Detection é utilizado para detecção de bordas, 

desenvolvido pelo pesquisador por John F. Canny in (OpenCV, 2023a). A etapa de 

detecção de bordas é uma técnica crucial para extrair informações estruturais úteis de 

diferentes objetos de visão que compõem a imagem, além de reduzir drasticamente a 

quantidade de dados a serem processados, por vir a aumentar a eficiência de 

detecção de formas geométricas contidas na imagem. Para compreender seu 

funcionamento deve-se subdividir em alguns estágios (já intrínsecos ao código), 

sendo eles: 

Redução de ruído: Como a detecção de bordas é suscetível a ruído na 

imagem devido a sua resolução, o primeiro passo é remover-reduzir o ruído existente 

com aplicação do filtro gaussiano 5x5, mas pode variar de acordo com a aplicabilidade 

do modelo.  

Gradiente de Intensidade de borda na Imagem: A imagem suavizada é então 

filtrada com um kernel Sobel na direção horizontal e vertical para obter a primeira 

derivada na direção horizontal (Gx) e direção vertical (Gy). Assim, por meio dessas 

duas imagens, podemos encontrar o gradiente de borda e a direção de cada pixel, da 

seguinte forma (equações abaixo): 

 

Eq1.  𝐺 =  √𝐺𝑥
2 +  𝐺𝑦

2 

 

Em que: 



33 

 

 

Gx = direção horizontal; 

Gy = direção vertical; 

𝐺 = Gradiente de Borda 

 

Eq2. 𝜃 = 𝑡𝑎𝑛−1  (
𝐺𝑦

𝐺𝑥
) 

 

Em que: 

𝜃 = ângulo dos gradientes; 

 

De forma geral, a direção do gradiente é sempre perpendicular às arestas, e é 

arredondado para um dos quatro ângulos que representam as direções vertical, 

horizontal e duas diagonais, o que auxilia nessa diferenciação das bordas para os 

agrupamentos de pixels e cada pixel, cada aresta gera um ângulo de inclinação o que 

define o direcionamento da borda. 

Supressão não máxima ou limiar de magnitude de gradiente: Após obter a 

magnitude e a direção do gradiente na imagem, uma varredura completa é realizada 

a fim de remover quaisquer pixels indesejados que possam não constituir a borda. 

Para tal, cada pixel, é verificado se é um máximo local em sua vizinhança na direção 

do gradiente, ou não, (Figura 02). Sendo que, o ponto A está na borda (na direção 

vertical), em que a direção do gradiente é normal à borda. Já os pontos B e C estão 

em direção ao gradiente. Assim, o ponto A é analisado por meio dos pontos B e C 

para possibilidade de se formar um máximo local, se afirmativo, é considerado para o 

próximo estágio, caso contrário, é suprimido (colocado em zero), logo, o resultado 

obtido das bordas é uma imagem binária com "bordas suaves" detectadas: 

 
 
 
 
 
 
 
 
 

Figura 02: Ilustração da direção do gradiente para a definição e constituição do que é 

a borda no objeto. Fonte: OpenCV, (2023a) 
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Limite de Histerese ou limite duplo: Neste estágio decide quais são arestas-

linhas e quais não são, e para isso, precisa-se de dois valores limites, minVal e 

maxVal. Em que, para qualquer aresta com gradiente de intensidade maior que 

maxVal certamente são arestas e aquelas abaixo de minVal certamente não são 

arestas, portanto, serão descartadas. Para aqueles que estão entre esses limiares são 

classificados como arestas ou não arestas baseadas em sua conectividade. Logo, se 

estiverem conectados a pixels de "borda segura", eles são considerados parte das 

bordas, contrário são descartados (Figura 03). 

Em que, a borda A está acima do maxVal, portanto considerada como "certa". 

Embora a aresta C esteja abaixo de maxVal, ela está conectada à aresta A, de modo 

que também é considerada uma aresta válida e obtém-se a curva completa. Porém, a 

aresta B, embora esteja acima de minVal e esteja na mesma região que a aresta C, 

não está conectada a nenhuma "aresta segura", de modo que será descartada. 

Portanto, é muito importante selecionar minVal e maxVal de acordo para obter o 

resultado correto, um parâmetro que pode variar com a imagem base, objetivo do 

trabalho, qualidade da coleta de dados, e visualização final das bordas. Nesse estágio 

também remove pequenos ruídos de pixels na suposição de que as bordas são linhas 

longas e seguras.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 03: Ilustração da composição de quais serão arestas-linhas e quais não, sob a 

ótica dos valores limites, minVal e maxVal. Fonte: OpenCV, (2023a) 

 

2.4.3 Biblioteca OpenCV – Detecção de geometria  

A aplicação da transformada de HoughLinesP da scikit-image utilizado pela 

biblioteca OpenCV para detecção das linhas após realce das bordas e segmentação 

dos objetos de interesse (Jiri Matas et al., 2000), com finalidade de exibir linhas retas 
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(geometria lineares) de uma imagem de aresta binária de entrada (edges). Sabe-se 

que geralmente as linhas são parametrizadas como y = mx +c, com gradiente” m” e 

interceptação “y c”, no entanto, isso significaria que “m” vai ao infinito para linhas 

verticais. Assim para evitar isso, o algoritmo constrói um segmento perpendicular à 

linha, levando à origem, o qual a linha é representada pelo comprimento desse 

segmento, “r” e o ângulo que ele faz com o eixo x, θ (HoughLineP, 2023; HoughLines, 

2023). 

Logo, a transformada de Hough constrói uma matriz de histograma 

representando o espaço de parâmetros, “M x N”, para “M” diferentes valores do “r” e 

“N”, valores diferentes de θ. Dessa forma, para cada combinação de parâmetros, “r e 

θ", tem-se o número de pixels diferentes de zero na imagem de entrada que cairia 

perto da linha correspondente e incrementamos a matriz na posição (r,θ), o que evita 

linhas infinitas, a determinar inclinação e limites de ocorrência. 

Dessa forma, para cada pixel diferente de zero “tendenciando” para possíveis 

candidatos de linha, e os máximos locais no histograma resultante indicam os 

parâmetros das linhas mais prováveis detectados na imagem. Para incrementar essa 

funcionalidade tem-se a Transformada Hough Probabilística Progressiva, o qual diz 

que, as linhas podem ser extraídas durante o processo de votação caminhando ao 

longo dos componentes conectados, o que retorna o início e o fim de cada segmento 

de linha. Para tal, o algoritmo possui três parâmetros principais: um limite geral que é 

aplicado ao acumulador Hough, um comprimento mínimo de linha (threshold) e a 

lacuna de linha (line_length) que influencia a fusão de linha, parâmetros que variam 

com a aplicação e qualidade da imagem gerada (Duda & Hart, 1972; Galamhos et al. 

1999).  

 
3. MATERIAIS E MÉTODOS 

 

 

3.1 Área de estudo 

O estudo foi conduzido em duas áreas específicas de plantios comerciais de 

eucalipto localizadas no estado de São Paulo, Brasil, (Figura 04). Ambas as regiões 

exibem características predominantemente plano e suave ondulado (EMBRAPA, 

2023), típicos da paisagem central do Estado. Com base em dados climáticos oficiais 

da EMBRAPA (2023a) do Estado, essas áreas são conhecidas por apresentar 
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variações sazonais distintas, sendo o clima tropical de altitude, que, segundo a 

classificação de Koeppen, é o Cwa, clima quente com inverno seco e períodos de 

precipitação moderada, fatores que influenciam diretamente no ciclo de crescimento 

das árvores, com uma média anual de precipitação de aproximadamente 1.400 

milímetros e temperatura média anual em torno de 27°C. Quanto ao solo, segundo a 

classificação proposta no Sistema Brasileiro de Classificação de Solos (SiBCS) a 

região estuda apresenta uma variação de Latossolos Vermelhos, Vermelho-Amarelos 

Distróficos e Areias Quartzosas sobre as rochas do Grupo Bauru e os sedimentos 

terciários (EMBRAPA, 2023). 

Além disso, a topografia levemente ondulada dessas áreas tem impacto direto 

na escolha dos sistemas de colheita adotados. Na Área A (Figura 4), de 17 hectares, 

onde o sistema de Toras Curtas é implementado, observa-se o uso de Harvester, para 

as etapas do corte e pré-processamento das árvores, e Forwarder, que são 

empregados para o baldeio e empilhamento de toras. Por outro lado, na Área B (Figura 

4), de 16 hectares, onde se adota o sistema de toras longas, são utilizados Feller e 

garras traçadoras de toras, que lidam de forma mais eficiente com a manipulação de 

toras de maior comprimento. Esses sistemas de colheita demonstram diferenças 

marcantes na geração de resíduos, sendo essencial considerar esses fatores ao 

avaliar as operações de colheita e suas implicações no manejo de resíduos florestais. 
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Figura 04: Localização dos talhões onde foram coletados os dados de resíduos 

madeireiros pós-colheita florestal, sob os cenários avaliados. Fonte: Autor, (2023). 

 

3.2 Aquisição das imagens (Ortomosaico)  

A aquisição das imagens foi realizada por meio de sobrevoos de Aeronave 

remotamente pilotada nos respectivos talhões após a fase de colheita florestal, 

quando as toras já haviam sido baldeadas e ou transportadas, para isso foram 

demarcados os pontos de controle fisicamente no terreno com objetos claramente 

visíveis e identificáveis (placas refletivas) de onde foram os pontos de partida do voo. 

As imagens, ortomosaico, capturadas contêm informações em RGB e com resoluções 

espaciais distintas, definidas em função de três alturas de voo. Para garantir a 

qualidade das imagens, foram considerados planos de voo com uma velocidade 

média de 7 m/s, com uma sobreposição fontal de 80% e uma sobreposição lateral de 

75% usando o modelo Phantom 4 Pro da DJI de 40 megapixel para tora curta e Mavic 

2 Pro da DJI de 12 megapixel para tora longa. Assim, foi estabelecido um protocolo 

de coleta para possibilitar a comparação dos resultados obtidos após o 

processamento das imagens dos Aeronave remotamente pilotada, Tabela 01. 
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Tabela 01: Descrição dos atributos de coletas de acordo com o sistema adotado a fim 
de obter variação de dados para o algoritmo.  

Atributos da coleta Toras curtas – Área A Toras longas – Área B 

Período do voo 09 a 15h 09 a 15h 

Altura do voo 60, 90 e 120 m 40, 60 e 80 m 

Ortomosaico - 
Resolução espacial 

(pixel) 
0,8 – 1,2 – 1,5 cm 1,1 – 1,8 – 2,5 cm 

Toras Sem casca Com casca 

Tempo pós-colheita 
(corte + baldeio) 

30 dias 40 dias 

 
O objetivo primordial desta etapa foi garantir a aplicabilidade e reprodutibilidade 

do modelo em diversas situações de campo no setor florestal. Considera-se o impacto 

nas operações, bem como possíveis variações volumétricas, como sendo resultantes 

das condições específicas de cada sistema testado. 

 

3.3 Levantamento de campo  

 A validação de campo, constitui na alocação e distribuição de forma aleatória 

de parcelas circulares de 400 m² com raio de 11,28 m, nas áreas de estudo, de acordo 

com a proporção 1:1 ha da área total de cada sistema (Figura 05), ou seja, a cada 1 

hectare de área foi lançado uma parcela aleatória. A marcação e numeração dos 

resíduos em campo foram realizadas antes do sobrevoo com Aeronave remotamente 

pilotada, para posterior identificação nas imagens, conforme demarcado nos pontos 

centrais de cada parcela. Em algumas situações, as toras foram identificadas com 

spray e, quando possível, marcadas com sacos plásticos, (Figura 06), proporcionando 

uma validação robusta dos resultados obtidos. 
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Figura 05: Distribuição amostral aleatória das parcelas para validação em campo do 

modelo de identificação e quantificação proposto para as áreas de estudo (A) tora 

curta, e (B) tora longa. Fonte: Autor (2023). 
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Figura 06: Parcela amostral no campo, e forma adotada para delimitar o centro da 

parcela e identificação das toras. Fonte: Autor, (2023). 

 

 Durante as inspeções realizadas nas parcelas de campo, foram tomadas 

diversas medidas e observações cruciais para a compreensão abrangente do 

ambiente de estudo, tais como: identificar os diferentes tipos de resíduos presentes 

na área, o que permitiu uma melhor compreensão das práticas locais de operação de 

colheita e baldeio. Foi tomado também, registros fotográficos de toras soterradas, 

pontuado a presença de cascas, galhos, feixes de ponteiras e outros detritos 

orgânicos que podem obstruir a visibilidade das toras por parte dos Aeronave 

remotamente pilotada e o grau de sujidade na área e a exposição de solos para 

facilitar as discussões após aplicação da técnica de segmentação de objetos. 

 Essa abordagem das parcelas amostrais, permitiu a quantificação dos resíduos 

madeireiros ou toras por meio de cubagem. Essa quantificação do volume das toras 

presentes em cada parcela foi adotada o modelo de cubagem do tipo Smalian. Assim, 

para todas as toras acima de um metro de comprimento, foram medidos dois 

diâmetros (d) para cada extremidade (quatro medições no total) e comprimento da 
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tora (h) (Figura 07), como forma de calcular o volume mais próximo do real presente 

em cada parcela. 

 
 
 
 
 
 
 
 
 
Figura 07: Esquema ilustrativo da medição nas toras para cálculo da cubagem 

Smalian dos resíduos nas parcelas. Fonte: Autor, (2023). 

  

 Contudo, com intuito de verificar a assertividade do modelo, foi feito uma 

divisão de dois critérios para inclusão das toras (> 3 metros de comprimento e ≥ 4 cm 

de diâmetro) denominado de resíduo comercial (desperdício da colheita), dos resíduos 

totais (toras > 1 m comprimento e sem delimitação de diâmetro), assim para o volume 

foi considerado as seguintes equações: 

 

  

 

 

 

 

 

 

Em que: 

d1 = diâmetro da tora em cm; 

g1 = área basal de cada extremidade da tora em m2; 

h = comprimento da tora em m; 

vj = volume total da tora em m3; 

vt = volume total da parcela em m3. 

 
 Sendo que os cenários avaliados detêm das seguintes estatísticas descritivas, 

(Tabela 02), quando se compara os dados quantitativos de volume coletados em 

campo. 

h 

d1 

d2 

d3 

d4 

𝑣𝑡 =  ෍ 𝑣𝑗  

𝑣𝑗 =
ሺ𝑔𝑖 +  𝑔𝑖+1ሻ

2
∗ ℎ 

𝑔𝑖 =
𝜋 ∗ (

𝑑1 + 𝑑𝑖+1

2 )
2

40000
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Tabela 02: Dados descritivos referentes a cubagem dos resíduos totais e comerciais 

estimados para a área total dos talhões, destinada ao modelo de tora curta e tora 

longa.  

Resíduos totais (< 4 cm diâmetro) - 17 Parcelas 

Projeto Talhão Média (m³/ha) 
Máx. 

(m³/ha) 
Mín. 

(m³/ha) 
DesvPad. 

(m³/ha) 

Tora curta 00A 21.57 48.03 10.03 9.62 

Tora longa 00B 15.72 26.12 5.80 3.25 

Projeto Talhão 
Vol. produção 
total (m³/ha) 

% 
resíduo 

Área (ha) 
Nº toras / 
parcela 

Tora curta 00A 345.92 6.00% 17.20 1524 

Tora longa 00B 448.15 3.51% 16.39 223 

Resíduos comerciais (≥ 4 cm diâmetro) - 17 Parcelas 

Projeto Talhão Média (m³/ha) 
Máx. 

(m³/ha) 
Mín. 

(m³/ha) 
DesvPad. 

(m³/ha) 

Tora curta 00A 16.66 35.51 5.99 7.98 

Tora longa 00B 14.57 24.50 4.53 3.64 

Projeto Talhão 
Vol. produção 
total (m³/ha) 

% 
resíduo 

Área (ha) 
Nº toras / 
parcela 

Tora curta 00A 345.92 5.00% 17.20 1214 

Tora longa 00B 448.15 3.25% 16.39  183 

 
 
3.4 Pré-processamento das imagens  

O pré-processamento e a visualização das imagens obtidas foram realizados 

por meio do Sistema de Informações Geográficas QGIS (QGIS, 2023). As etapas do 

processamento incluíram a mosaicagem das imagens (feita pelos respectivos 

aplicativos da aeronave remotamente pilotada de cada sistema), seguida pela 

exportação e visualização da qualidade da imagem resultante para cada altura de voo. 

Durante esse processo, foram observados fatores como resolução espacial (tamanho 

do pixel), extensão e bandas espectrais (RGB) das imagens para cada área, a fim de 

auxiliar na etapa posterior de definição dos parâmetros do algoritmo para cada 

sistema, visto que foram áreas e resíduos madeireiros distintos. 

Ao levar em conta a capacidade de processamento computacional, torna-se 

economicamente vantajoso subdividir os dados das imagens em áreas menores, a fim 

de prevenir erros durante o processamento e redução de tempo no processamento. 

Para garantia da eficiência no processamento pelo algoritmo, foi feito um 

procedimento de recorte nas imagens raster (para todas as alturas testadas) por meio 
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do código em linguagem R, no ambiente RStudio (RStudio, 2023). Nesse processo, 

foi carregado um arquivo shapefile no formato de polígonos para executar o recorte. 

Script 1 (Para recorte nas imagens de todas as alturas testadas): 

#Recortar arquivo raster 

# Instale e carregue as bibliotecas necessárias 

install.packages(c("raster", "sf", "rgdal")) 

library(raster) 

library(sf) 

library(rgdal) 

# Carregar camada raster 

raster_original <- raster("C:/Users/Map.tif") 

# Carregue o arquivo shapefile contendo os polígonos de recorte 

shapefile <- st_read("C:/Users/SHP.shp") 

shapefile <- st_transform(shapefile, crs = crs(raster_original)) 

# Recortar o raster para cada polígono e salvar em arquivos separados 

for (i in seq_len(nrow(shapefile))) { 

  poly <- shapefile[i, ] 

  raster_recortado <- mask(raster_original, poly) 

# Salvar o raster recortado em um novo arquivo 

  output_path <- paste0("C:/Users/Ortho_recort_", i, ".tif") 

  writeRaster(raster_recortado, output_path, format = "GTiff", overwrite = TRUE) 

} 

 

3.5 Processamento das imagens 

3.5.1 Etapas do processamento das imagens 

Para implementar as técnicas de segmentação e detecção de objetos e bordas 

é essencial criar segmentos ou regiões, considerada a etapa mais crítica desta 

classificação orientada ao objeto. Esses processos baseiam-se nas descontinuidades 

e na similaridade, tendo como referência a composição da imagem capturada por 

Aeronave remotamente pilotada. Nesse contexto, foram selecionadas previamente 

configurações na biblioteca OpenCV para todos os sistemas avaliados, que incluem a 

utilização de técnicas como escala de cinza (Gray – 1°), filtros de suavização (Blur e 

Gamma – 2°) e índices de vegetação (NDVI – 3°), seguindo essa ordem de prioridade, 
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respectivamente, devido a organização estrutural do algoritmo testado, ao partir do 

filtro mais simples ao mais complexo na imagem. 

Além disso, foram definidos valores para as funções Canny e HoughLinesP, 

necessários para detecção de bordas, segmentação de objetos e identificação de 

toras na imagem RGB obtida por meio de Aeronave remotamente pilotada para cada 

cenário. Esses procedimentos são ilustrados no fluxo de processamento mostrado na 

Figura 05. 

Para o desenvolvimento do modelo por meio da técnica de segmentação e 

detecção de objetos, foram definidas as propriedades elementares, os parâmetros de 

cada sistema, com o objetivo de evidenciar a distinção dos constituintes na imagem, 

para garantia de confiabilidade para a classificação ou identificação. Os atributos 

considerados nessa metodologia foram: índices e bandas espectrais que compreende 

diferentes composições de bandas espectrais, notadamente aquelas pertencentes ao 

RGB, textura que abrange a intensidade espacial dos pixels, bem como as 

propriedades dos níveis de cinza e os efeitos resultantes da aplicação de filtros de 

suavização e por fim de geometria os quais inclui a forma, área, perímetro, diâmetro, 

comprimento e homogeneidade dos objetos em questão. 

Para implementação dessa metodologia, um fluxograma foi delineado, (Figura 

08), o qual detalha as etapas do script para cada fase e parâmetro da biblioteca 

utilizada, bem como a sequência de ações a serem realizadas no ambiente Python. 

 
*Etapas que permite adaptação dos parâmetros para cada cenário e finalidade a ser testado. 
**Etapas da avaliação visual da detecção, somada a avaliação prévia estatística pelo código do algoritmo. 

 
Figura 08: Etapas e funções do algoritmo OpenCV utilizadas no processamento das 

imagens para obtenção da identificação e quantificação dos resíduos florestais pós-

colheita. Fonte: Autor, (2023). 
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3.6 Script do modelo de identificação e quantificação (Rotina via Python) 

 A descrição detalhada do código via Python, para identificação e quantificação 

dos resíduos pós-colheita florestal, está no Apêndice A desse documento, contendo 

as bibliotecas e funções totais para possibilitar a detecção de toras nas imagens dos 

Aeronave remotamente pilotada. Cada cenário foi avaliado em diferentes valores 

mínimos e máximos dos parâmetros (Tabela 03), para detecção de bordas e 

segmentação de objetos, a fim de auxiliar na comparação e escolha do melhor valor, 

pois há variação dos tipos de resíduos no solo, bem como das características do 

talhão no momento do voo para cada empresa. 

 

Tabela 03: Valores testados no algoritmo com intuito de identificar os melhores 

parâmetros para cada cenário avaliado. 

Parâmetro Toras curtas – Área A Toras Longas – Área B 

Borda - cv2.Canny Min (120 a 200) Min (100 a 370) 

Borda - cv2.Canny Max (200 a 300) Max (250 a 450) 

Detecção - 
cv2.HoughLinesP 

minLineLength = 50, 25 
maxLineGap = 10, 5 

minLineLength = 50, 25 
maxLineGap = 10, 5 

Suavização- 
cv2.GaussianBlur 

5x5 5x5 

 
 
3.7 Avaliação estatística do algoritmo 

Para fins comparativos e de visualização dos resultados nos diferentes cenários 

avaliados, foram elaborados gráficos realizados em ambiente R e mapas no QGIS. 

Na validação estatística da metodologia proposta, foram adotadas duas abordagens, 

o AcATaMa para comparar a acurácia na classificação (1 – Resíduo e 0 – Não 

Resíduo) e a Validação de Campo para avaliar os desvios percentuais nos volumes 

de toras observados pela cubagem comparados aos estimados pelo algoritmo. 

 Para a avalição de acurácia foi conduzida utilizando o plugin Accuracy 

Assessment of Thematic Maps ou Avaliação da Classificação de Imagens com 

Técnicas de Aprendizado de Máquina - AcATaMa, integrado ao software QGIS. Entre 

as opções de alocação de amostras, optou-se pela amostragem aleatória 

estratificada, com base na proporção da área. Essa abordagem emprega a fórmula 

de tamanho de amostra de Cochran (1977), calculando o tamanho total da amostra e 
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o número de pontos para cada estrato de acordo com a proporção da área de cada 

estrato no mapa, sendo essa proporção determinada automaticamente pelo 

AcATaMa. Isso implicou no número de amostras para cada classe de forma 

proporcional à sua representatividade no conjunto de dados original, do total de 400 

amostras distribuídas nas classes para cada altura de voo, distribuídas aleatoriamente 

nas imagens classificadas e subsequentemente interpretadas com o auxílio de 

imagens obtidas pela aeronave remotamente pilotada. O valor de acurácia foi 

fundamental para verificar a eficácia do modelo na identificação dos resíduos (0 e 1), 

o que gerou uma visão precisa do desempenho do algoritmo quanto a sua 

assertividade na identificação. 

 

4. RESULTADOS E DISCUSSÃO 

 

 

4.1 Algoritmo de identificação e quantificação  

De forma geral, foi possível estabelecer uma metodologia eficaz para a 

identificação e quantificação de resíduos, ao considerar distintos sistemas de colheita 

(toras curtas e longas) por meio de imagens capturadas por Aeronave remotamente 

pilotada, com o algoritmo desenvolvido, (Figura 09). Um dos benefícios proeminentes 

desse procedimento é a eliminação da necessidade de uma fase de treinamento. 

Contudo, para cada sistema de colheita, são recomendados valores específicos para 

os parâmetros, principalmente em razão das características espectrais e espaciais 

(Tabela 04). As variações nas alturas de voo e na resolução espacial, ao influenciarem 

a diferenciação e segmentação de objetos, assim como a detecção de bordas, 

revelaram disparidades significativas entre as diferentes alturas e sistemas. 

Ao considerar a diferença entre alturas e sistemas, conforme refletido nas 

avaliações de campo e acurácias, (Tabela 04), observa-se comportamentos 

semelhantes para ambos os sistemas, devido aos índices de desvios volumétricos 

serem mais elevados em alturas de voo mais baixas (menores pixels). Quando se 

avalia a assertividade do algoritmo com o real em campo (cubagem), as alturas de 

120 m (tora curta) e 80 m (tora longa), apresentaram as melhores avaliações de 

acurácia, de 0,88 e 0,85, respectivamente e variação no desvio volumétrico de até 2,5 

%, aproximadamente. Isso vale quando se compara o desvio de número de toras 

dessas respectivas alturas, o qual para os dois sistemas apresentaram um desvio 
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médio de número de toras abaixo de 8%, ou seja, o número de toras que o algoritmo 

detectou foi em média 8% maior que a quantidade realmente tinha em campo. 

Porém, ao considerar o sistema de tora curta, as imagens realizadas a 120 m, 

seguidas pela altitude de 90 m, obtiveram resultados próximos à validação de campo. 

No caso do sistema de tora longa, os resultados indicaram alturas de voo de 80 m, 

seguidas pelas de 60 m, contudo ao verificar as imagens de identificação pelo 

algoritmo apresentam resultados divergentes, isso é devido à dificuldade do algoritmo 

em detectar toras em imagens de voos mais baixos (menores pixels).  

Ao analisar os parâmetros para a detecção e segmentação de objetos, assim 

como a identificação das geometrias lineares (toras), foram observados valores 

distintos para cada tipo de sistema, ou seja, em detrimento das diferenças de resíduos 

madeireiro o algoritmo também necessita de parâmetros distintos para cada sistema 

de colheita. Estes resultados ressaltam a existência de limites ótimos, tanto máximos 

quanto mínimos durante a etapa de segmentação de bordas (percebe que há uma 

variação dos desvios mesmo dentro da classe de altura), e isso para cada atributo que 

compõe a imagem de acordo com a altitude de voo testado, assim como autores atuais 

corroboram com essas afirmações (Zhou et al. 2020; Sriram et al. 2021; Zhou et al. 

2023). 

 

Tabela 04: Diferentes atributos e parâmetros testados no algoritmo comparados aos 

resultados da cubagem de campo para os dois cenários tora curta e longa. 

Cenário 
(Sistema) 

Altura 
de voo 

(m) 

cv2. Canny 
(min. e máx) 

HoughLinep 
(min. e max.) 

Vol médio 
(m³/ha) 

Vol médio 
cubagem 
(m³/ha) 

Desvio 
Volumétrico 

Acurácia 
AcATaMa 

Desvio 
Nº de 
toras 

Tora 
Curta – 
Área A 

60 150-250 50-10 57.53 16.66 40.87% 0.48 20% 

60 150-250 25-5 30.38 16.66 13.72% 0.51 25% 

60 120-300 50-10 69.53 16.66 52.87% 0.44 19% 

60 120-300 25-5 38.75 16.66 22.09% 0.56 30% 

60* 150-300 50-10 28.93 16.66 12.27% 0.55 15% 

60* 150-300 25-5 27.75 16.66 11.09% 0.53 19% 

90 150-250 50-10 46.08 16.66 29.42% 0.42 22% 

90* 150-250 25-5 23.65 16.66 6.99% 0.62 10% 

90* 170-280 50-10 19.98 16.66 3.32% 0.67 11% 

90 170-280 25-5 9.73 16.66 -6.94% 0.55 22% 

90 130-260 50-10 57.73 16.66 41.07% 0.4 24% 

90 130-260 25-5 27.48 16.66 10.82% 0.45 22% 

120 150-200 50-10 48.00 16.66 31.34% 0.47 20% 
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Cenário 
(Sistema) 

Altura 
de voo 

(m) 

cv2. Canny 
(min. e máx) 

HoughLinep 
(min. e max.) 

Vol médio 
(m³/ha) 

Vol médio 
cubagem 
(m³/ha) 

Desvio 
Volumétrico 

Acurácia 
AcATaMa 

Desvio 
Nº de 
toras 

120* 150-200 25-5 18.80 16.66 2.14% 0.88 8% 

120* 170-250 50-10 16.43 16.66 -0.23% 0.85 6% 

120 170-250 25-5 14.98 16.66 -1.69% 0.59 13% 

120 200-260 50-10 19.48 16.66 2.82% 0.56 19% 

120 200-260 25-5 11.48 16.66 -5.19% 0.53 18% 

Tora 
Longa 
Área B  

40 200-350 50-10 60.25 14.57 45.68% 0.31 24% 

40 200-350 25-5 31.50 14.57 16.93% 0.41 23% 

40 250-400 50-10 48.75 14.57 34.18% 0.33 22% 

40 250-400 25-5 38.25 14.57 23.68% 0.36 26% 

40* 370-450 50-10 25.50 14.57 10.93% 0.49 18% 

40* 370-450 25-5 11.95 14.57 -2.62% 0.42 19% 

60 150-350 50-10 46.70 14.57 32.13% 0.44 20% 

60* 150-350 25-5 17.03 14.57 2.46% 0.58 17% 

60 175-350 50-10 43.03 14.57 28.46% 0.49 20% 

60* 175-350 25-5 13.98 14.57 -0.59% 0.59 16% 

60 200-400 50-10 58.03 14.57 43.46% 0.33 20% 

60 200-400 25-5 47.25 14.57 32.68% 0.39 18% 

80 100-250 50-10 26.53 14.57 11.96% 0.55 18% 

80* 100-250 25-5 13.98 14.57 -0.59% 0.85 8% 

80 150-300 50-10 45.83 14.57 31.26% 0.54 15% 

80* 150-300 25-5 16.25 14.57 1.68% 0.83 7% 

80 200-350 50-10 47.63 14.57 33.06% 0.45 15% 

80 200-350 25-5 25.26 14.57 10.69% 0.51 14% 

* Parâmetros que apresentaram melhores resultados quanto ao desvio volumétrico e número de toras médio das 
parcelas 

 

 
Figura 09: Etapas sequenciais utilizadas para o processamento das imagens via 

algoritmo para os dois sistemas, após avaliação dos resultados. Fonte: Autor, (2023). 

A aplicação eficaz das ferramentas e funções do OpenCV neste estudo exige 

uma compreensão profunda do funcionamento dos parâmetros. Essa compreensão 

não se limita apenas a este estudo específico, mas representa uma necessidade 
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fundamental para qualquer pesquisa que tenha como objetivo o reconhecimento de 

objetos em imagens ao utilizar esta biblioteca. A familiaridade com as configurações 

é essencial para otimizar e ajustar os resultados, o que garante precisão e confiança 

na detecção e análise de objetos na imagem.  

Esses resultados ganham destaque quando se comparam as imagens originais 

(RGB) em várias alturas de voo com as segmentadas e bordas detectadas pelo 

algoritmo, (Figura 10). Após testes nessa metodologia, ficou nítido que, com uma alta 

resolução espacial das imagens (obtidas em altitudes menores, como 60 m para o 

primeiro cenário e 40 m para o segundo), o processo de segmentação e detecção das 

bordas dos objetos na imagem se torna mais complexo, o que dificulta a identificação 

das toras, elevando os desvios em mais de 18% em média. Uma etapa crucial para o 

sucesso da metodologia de identificação é a detecção e segmentação das bordas, 

uma vez que elimina o alto nível de ruído facilitando a etapa posterior de identificação 

das toras, (Figura 10) (Ribeiro et al. 2020; Li et al. 2022; Xia et al. 2022). 

Em processamento de imagens de alta resolução espacial, o termo "ruído" 

refere-se a variações ou interferências indesejadas nas características da imagem que 

não representam informações relevantes para a análise pretendida. Podem ser 

causadas por alguns fatores e impactar negativamente a qualidade e precisão das 

análises realizadas sobre a imagem, tais como: ruído de sensor, atmosférico, 

iluminação, compressão ou eletrônico. É importante ressaltar que a relação entre 

altura de voo e ruído não é uma regra fixa, e diferentes situações podem resultar em 

diferentes efeitos. Em que nessa metodologia teve-se de lidar com ruídos na 

segmentação dos objetos na imagem em detrimento dos atributos de coleta e 

sistemas de colheita adotados. 

Quando se avalia os desvios estatísticos de volume e número de toras para o 

sistema de toras curtas, associado a imagem capturada a 120 metros nota-se que o 

algoritmo apresentou melhor assertividade para segmentar os objetos e suprimir 

ruídos, (Figura 11), o que vem a facilitar o processo de identificação individual das 

toras (geometrias lineares), ao contrário do que foi observado na imagem a 60 metros, 

para mesmo sistema. No caso do sistema de toras longas, um padrão semelhante 

também foi identificado em relação às alturas de voo (Figura 11), sendo a imagem 

capturada a 80 metros o algoritmo apresentou melhores resultados comparado a de 

40 metros, que quase não foi possível diferenciar os segmentos dos objetos na 

imagem, mesmo ao considerar os filtros e índices adicionais dessa metodologia.  
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Figura 10: Detecção de bordas e segmentação de objetos pelo algoritmo nas 

diferentes alturas avaliadas: 1) sistema de toras longas 2) sistema de toras curtas. 

Fonte: Autor, (2023). 
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Figura 11: Identificação das toras pelo algoritmo nas diferentes alturas avaliadas: 1) 

sistema de toras longas 2) sistema de toras curtas. Fonte: Autor, (2023). 

 

Essa análise dentre alturas distintas impacta de maneira direta na eficiência 

operacional da aquisição de imagens por aeronave remotamente pilotada pelas 

equipes de campo nas empresas, visto que quanto maior a altura de voo maior o 

rendimento em hectares avaliados. Do ponto de vista da gestão de qualidade, essa 

abordagem é crucial, pois amplia o escopo de áreas a serem avaliadas, logo espera-

se resultados e processamentos mais rápidos. 

A resolução espacial exerce impacto significativo na densidade de informações 

por centímetro quadrado na imagem em relação a quantidade de informação dos 

alvos. Assim, uma resolução espacial maior, descrita por pixels menores, pode 

complicar o processo de análise, uma vez que a interpretação de dados detalhados 

em alta resolução exige capacidades de processamento mais complexas, por vezes 

tornando-se inviável, além disso, acabou por dificultar a identificação de resíduos 

madeireiros pelo algoritmo, principalmente quando se observa os desvios das 

resoluções menores comparadas as maiores. Além disso, estudos (Ding, et al.2019; 

Alomari, et al. 2020; Pádua, et al. 2017; Shleymovich et al. 2016), destacam a 
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relevância de considerar a complexidade inerente na separação de objetos durante a 

identificação de toras, visto que imagens de Aeronave remotamente pilotada 

frequentemente apresentam diversos níveis de ruído e interferência, como: local do 

voo, hora do voo, luminosidade, chuva, presença de cascas e folhas o que dificultam 

a visualização da tora em campo e na imagem.  

Em relação aos filtros de suavização, são sensíveis ao nível de informação e 

detalhamento presentes no pixel (Zhang et al. 2018a), e nessa pesquisa foram cruciais 

para o sucesso do processamento do algoritmo na identificação das toras na imagem. 

Embora o filtro Blur tenha sido amplamente empregado para suavizar imagens e 

diminuir o ruído, seu impacto na segmentação de objetos em imagens de Aeronave 

remotamente pilotada pode ser variável. Conforme destacado em um estudo contínuo 

conduzido por Zhang et al. (2018a), esse filtro pode auxiliar na redução de pequenas 

variações na intensidade dos pixels, resultando em bordas menos nítidas e menos 

detalhes nas regiões de transição. Essa condição pode resultar em uma segmentação 

menos precisa, especialmente em áreas caracterizadas por alta complexidade de 

texturas e bordas, entretanto, isso varia com a característica da imagem coletada e 

objetivos da pesquisa, tais como, a resolução adotada, o objeto a ser segmentado, a 

cobertura vegetal do local. 

O filtro gama é geralmente aplicado para controlar o contraste da imagem. 

Conforme indicado na pesquisa de Smith et al. (2016), a configuração inadequada dos 

parâmetros do filtro gama pode resultar em distorções indesejadas na imagem, o que 

causa perda de informações sutis, principalmente em áreas de sombras e regiões 

reais, e isso pode ter um impacto negativo na detecção de bordas e na segmentação 

de objetos, ao comprometer a precisão geral do processo. 

Portanto, ao se aplicar esses filtros, é crucial ajustar suas configurações de 

forma a equilibrar a suavização do ruído sem comprometer a nitidez das bordas e a 

fidelidade das características relevantes para a segmentação de objetos. Esse ajuste 

deve levar em consideração intimamente a altura de voo escolhida e os resultados 

prévios na segmentação. Além disso, considerar o contexto específico da cena e as 

características das imagens de Aeronave remotamente pilotada é fundamental para 

garantir resultados precisos e confiáveis na detecção e segmentação de objetos. 

 

4.2 Distribuição de resíduos  
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Compreender a diversidade nas dimensões dos resíduos e ajustar o algoritmo 

e parâmetros de acordo é crucial para uma identificação precisa de toras, 

principalmente ao considerar diferentes sistemas de colheita florestal. Uma análise 

comparativa da distribuição de resíduos para os dois sistemas de colheita revela 

comportamentos distintos no que diz respeito à prevalência no campo de toras com 

diâmetros menores.  

No sistema de toras curtas, aproximadamente, 84% do volume total de toras é 

composto por toras com comprimentos maiores que 3 metros. Em relação ao 

diâmetro, cerca de 93% dos resíduos encontrados nas parcelas possuem diâmetro 

superior a 4 cm, indicando a presença significativa de resíduos passíveis de 

reaproveitamento ou reciclagem que foram deixados na área pós-operações de 

colheita, (Figura 12). Já para o sistema de toras longas, aproximadamente 68% do 

volume total é composto por toras com comprimentos superiores a 3 metros, já 

relacionado ao diâmetro das toras quase 100 % apresentam valores superiores a 4 

cm (Figura 13).  

 
 

 

Figura 12: Distribuição do volume dos resíduos por classe de comprimento e de 

diâmetro para o sistema de toras curtas. Fonte: Autor, (2023). 
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Figura 13: Distribuição do volume dos resíduos por classe de comprimento e de 

diâmetro para o sistema de toras longas. Fonte: Autor, (2023). 

 

O sistema de colheita de toras curtas se destaca pela produção de toras de 

menor comprimento, resultando em uma quantidade significativa de resíduos, como 

cascas, galhos e ponteiras, dispersos pelo solo. Essa característica distintiva desse 

sistema é a presença de resíduos fragmentados e distribuídos no solo. Em contraste, 

o sistema de toras longas concentra-se no corte de árvores de maior comprimento, 

resultando em menos resíduos dispersos no solo e uma maior centralização dos feixes 

de outros resíduos, incluindo cascas. Essa centralização é facilitada pela presença 

das cascas nas toras durante a colheita, levando a uma disposição mais ordenada 

dos resíduos no talhão. Essas discrepâncias na geração e distribuição de resíduos 

entre os sistemas de toras curtas e longas desempenham um papel crucial na 

compreensão das variações observadas nas práticas de colheita florestal (Pena-

Vergara et al., 2022). 

Ao avaliar toda essa distribuição dos resíduos na assertividade do algoritmo na 

identificação e quantificação das toras na imagem, gera alguns questionamentos 

chave para maior compreensão da metodologia e seus parâmetros testados nessa 

pesquisa. São elas: Como a dimensão dos resíduos afetam a predição no algoritmo 

de identificação de toras? A cobertura do solo nos dois sistemas de colheita é 

diferente, como isso afeta o acerto do algoritmo ao identificar as toras na imagem? 
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Sabe-se que o comprimento e as dimensões dos resíduos têm um impacto 

significativo na identificação de toras, logo, o algoritmo, ao processar imagens de uma 

aeronave remotamente pilotada para identificar toras, leva em consideração 

características como forma, tamanho e padrões dos objetos na imagem e sua 

distribuição. Fatores como: Resíduos mais longos podem ter bordas mais distintas, 

facilitando a detecção, enquanto resíduos menores podem ser mais difíceis de 

identificar, assim, se a resolução espacial for muito baixa, os resíduos menores podem 

ser perdidos na imagem ou confundidos com o fundo pelo algoritmo.  

Logo, resíduos de diferentes dimensões podem introduzir níveis variados de 

ruído na imagem após identificação pelo algoritmo. O processamento de resíduos 

maiores pode exigir mais recursos computacionais e ou aplicação de filtros de 

suavização como vimos nessa pesquisa. Dependendo da capacidade do sistema 

computacional pode afetar o desempenho do algoritmo. O ambiente de colheita, toras 

semi soterradas, a densidade dos resíduos, podem influenciar na forma como as 

dimensões dos alvos são detectadas pelos algoritmos na imagem, bem como impactar 

nos desvios volumétricos aparentes, como visto na pesquisa.  

 

4.3 Processamento, novos passos e melhorias 

Os ajustes dos parâmetros de detecção de bordas desempenham um papel 

crítico na precisão e confiabilidade da identificação de objetos (Wang et al. 2020; 

Ribeiro et al. 2020; Xia et al. 2022), incluindo as toras. Os intervalos de variação nos 

valores mínimos e máximos das funções de segmentação, detecção e identificação 

de resíduos desempenham um papel crítico na eficácia do algoritmo para a detecção 

precisa de contornos e bordas em imagens. Em termos mais específicos, esses limites 

são essenciais para discernir entre o ruído de fundo e os objetos de interesse na cena. 

Valores excessivamente baixos podem resultar em uma detecção intensificada de 

bordas e detalhes insignificantes, o que gera um aumento no ruído e na detecção de 

características indesejadas. Por outro lado, valores excessivamente altos podem 

acarretar a perda de informações cruciais, ocasionando a não detecção de bordas e 

objetos relevantes, como destacado nos parâmetros avaliados nesta pesquisa. 

Além disso, é evidente, na segmentação dos objetos para os dois cenários 

investigados (toras curtas e longas), (Figuras 14 e 15), que a intensidade das bandas 

RGB desempenha um papel distintivo, ou seja, quais dados espectrais foram mais 

influentes no algoritmo. Fica claro que, à medida que o valor da intensidade média 
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aumenta, a influência da respectiva banda na detecção de bordas é ampliada, 

fenômeno mais notório nos valores de intensidade associados às toras curtas em 

comparação com as toras longas. 

Entretanto, ao analisar cada sistema, constata-se que, no caso das toras 

curtas, não há variação significativa entre as bandas considerando as altitudes de voo 

testadas. Por outro lado, ao avaliar as toras longas, observam-se padrões distintos 

entre as altitudes de voo, sendo notável, especialmente a 80 metros, a proeminência 

da intensidade na banda vermelha em relação às demais. Essa análise destaca a 

proximidade dos valores associados aos parâmetros da função de segmentação de 

bordas ao comparar diferentes sistemas em diversas altitudes de voo, ao considerar 

suas respectivas características distintas de resíduos. 

As imagens RGB podem apresentar comportamentos distintos durante o 

processamento devido à variação na intensidade das bandas espectrais, o que 

influencia a capacidade de distinguir e identificar, de maneira específica, as toras nas 

imagens de Aeronave remotamente pilotada. É relevante destacar que, em virtude das 

disparidades nos sistemas e nas características dos resíduos de madeira, como a 

presença de cascas e a distribuição de outros detritos no solo, ocorrem impactos 

significativos na reflectância e nos índices espectrais em ambos os casos. Estudos, 

como os de Hu et al. (2017), Shah et al. (2019) e Guo et al. (2020), têm enfatizado a 

importância de considerar a intensidade das bandas espectrais na realização da 

segmentação de objetos em imagens RGB, ao explorar diferentes características 

espectrais para aprimorar a precisão desse processo. 
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Figura 14: Intensidade das bandas espectrais sob a influência da função Canny do 

sistema de toras curtas, nos voos (A – 60, B – 90 e C – 120 m). Fonte: Autor, (2023). 
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Figura 15: Intensidade das bandas espectrais sob a influência da função Canny do 

sistema de toras longas, nos voos (A – 40, B – 60 e C – 80 m). Fonte: Autor, (2023). 

 

De forma geral, a presença da casca de uma árvore possui características 

ópticas diferentes em comparação com a madeira sem casca. A presença de cascas 

pode introduzir variações significativas na refletância da luz em diferentes 

comprimentos de onda (Toscano et al. 2017). Em imagens espectrais, como aquelas 

obtidas por sensores em Aeronave remotamente pilotada, as características 

espectrais da casca podem levar a diferenças nas assinaturas espectrais entre 

madeira com casca e madeira sem casca (Dinulică et al. 2019). Essas diferenças nas 

assinaturas espectrais podem ser exploradas para identificar e distinguir áreas com 

madeira com casca das áreas com madeira sem casca em imagens de Aeronave 

remotamente pilotada. Isso é particularmente relevante em aplicações como a 

detecção de toras ou resíduos de madeira em operações florestais, o que é um dos 

indicativos de diferença da resposta do algoritmo ao ser aplicado no sistema de tora 

curta e tora longa. 

A interação entre as propriedades das imagens e as características dos 

resíduos florestais tem sido objeto de estudo, com foco no desenvolvimento de 

técnicas de processamento personalizadas para a detecção precisa e eficiente de 

toras em imagens provenientes de Aeronave remotamente pilotada. Estudos 

anteriores, como os de Zhang et al. (2018a), Li & Wang (2019) e Sun et al. (2019), 

investigaram diversas abordagens, estabeleceram correlações entre as 

características dos resíduos e os sinais espectrais, além de desenvolverem algoritmos 

especializados para lidar com a complexidade das imagens de florestas e as variações 

na composição dos resíduos de madeira, semelhante ao enfoque proposto neste 

estudo. Entretanto, é importante ressaltar que esse campo ainda é pouco explorado 

nas pesquisas brasileiras no que tange resíduos florestais. 

A singularidade desta abordagem metodológica proposta reside em sua 

capacidade de enfrentar desafios altamente complexos por meio de abordagens 

diretas e eficientes. Principalmente ao comparar com modelos de Deep Learning que 

necessitam de uma amostragem extremamente complexa e com um número 

exorbitantemente grande de amostras para garantia de representatividade, o que 

nesse algoritmo é totalmente dispensável, uma vez que não tem essa etapa de 
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treinamento. Além disso, esse algoritmo é um método automatizado com todas as 

etapas codificadas e realizadas em um único ambiente de programação, Python. 

Adicionalmente, a metodologia concentra-se no monitoramento e controle do 

desempenho das operações de colheita florestal. No entanto, uma das estratégias 

mais sólidas e eficazes para minimizar a presença de resíduos é intervir em sua 

origem diretamente durante as atividades operacionais de colheita florestal, logo com 

o algoritmo proposto consegue-se avaliar com precisão o volume de resíduos 

madeireiros deixados no talhão com antecedência para mensurar perdas, gerar ações 

de qualidade operacional e indicadores de tratativas nas áreas críticas. 

Na literatura, vários estudos exploraram métodos alternativos para a 

segmentação de imagens no diagnóstico ambiental, por meio de Aeronave 

remotamente pilotada, especialmente em contextos internacionais, destacam-se 

contribuições como as de Kizha & Han (2015), Ma et al. (2017), Davis (2017), 

Choudhry & O'Kelly (2018), Windrim et al. (2019), Lopes Queiroz et al. (2020), 

Shokirov et al. (2021) e Dainelli et al. (2021; 2021a), além de Miller et al. (2022).  

Entretanto, o desenvolvimento e aplicação dessa técnica em interface com as 

áreas da colheita florestal e mensuração de resíduos madeireiros por meio de imagens 

ainda carece de ampla difusão no setor, principalmente devido à sua facilidade de 

integração com os processos de gestão de qualidade. Nem todas as empresas 

possuem atualmente um portfólio consolidado para a adoção dessas práticas, 

revelando um espaço promissor para o desenvolvimento de novas tecnologias no 

cenário nacional. 

O monitoramento contínuo dos resíduos madeireiros viabiliza a estratificação 

de áreas críticas, o que possibilita a identificação de variações entre os materiais 

genéticos propensos à geração de resíduos, como árvores suscetíveis a quebras 

durante o corte. Adicionalmente, esse processo estabelece um histórico de 

monitoramento, proporcionando destaques sobre os módulos de colheita mais 

sensíveis, o que aprimora assim a gestão de qualidade nos procedimentos e na 

tomada de decisões. 

Pesquisas recentes conduzidas por Oliveira & Santos (2020), Silva & Costa 

(2019) e Pereira & Carvalho (2021) revelam que empresas florestais que negligenciam 

o monitoramento dos resíduos pós-colheita enfrentaram perdas significativas na 

gestão da qualidade e nas operações florestais. Essas perdas abrangem ineficiências 

na alocação de recursos, desafios na previsão de demanda, desperdício de custos 
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materiais, impactos negativos na imagem corporativa devido a práticas não 

sustentáveis. 

Em contrapartida, empresas que implementam um monitoramento eficaz dos 

resíduos pós-colheita experimentam benefícios substanciais. Estes incluem a uso 

viável de recursos, a redução do desperdício de madeira, o controle ambiental, a 

conformidade com normas regulatórias, melhorias contínuas na eficiência 

operacional, bem como a valorização da marca por meio de práticas responsáveis e 

sustentáveis. Além disso, o monitoramento apropriado possibilita uma compreensão 

mais abrangente dos processos internos e externos da instituição. 

Assim, o avanço no desenvolvimento de medidas que viabilizam a avaliação 

contínua e eficaz de dados espaciais, por meio de técnicas de modelagem, tem 

impulsionado estudos aplicáveis e precisos no setor florestal. As técnicas de 

segmentação de objetos, aliadas a imagens de alta resolução espacial provenientes 

de Aeronave remotamente pilotada, e a modelagem baseada em inteligência artificial, 

têm se destacado pelo processamento preciso e detecção de objetos que refletem 

fielmente a realidade do talhão. Neste estudo, uma nova abordagem de Análise de 

Objetos Baseada em Imagem (OBIA) foi apresentada no ambiente Python, abrindo 

caminho para aprimoramentos futuros, e os resultados obtidos foram promissores e 

bem-sucedidos. 

 
5. CONCLUSÕES 

 

 

A abordagem metodológica empregada com esse algoritmo desenvolvido 

revelou eficácia e precisão na identificação e quantificação de resíduos em ambientes 

florestais, utilizando imagens obtidas por aeronave remotamente pilotada e ao 

considerar diferentes sistemas de colheita, toras curtas e longas, como proposto. As 

altitudes ideais de voo foram determinadas como 120 metros para toras curtas e 80 

metros para toras longas, levando em conta o índice de suavização aplicado na 

detecção de bordas, resultando em desvio volumétrico inferior a 2,5 % em ambos os 

cenários, e acurácia, de 0,88 e 0,85, respectivamente. A flexibilidade, reprodutibilidade 

e aplicabilidade demonstradas nessa metodologia enfatizam sua utilidade no 

monitoramento pós-colheita e na implementação de estratégias para aprimorar a 

gestão de qualidade nas subsequentes operações de colheita e silvicultura. Para 
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pesquisas futuras, recomenda-se a exploração de imagens infravermelhas a fim de 

avaliar seu impacto nos atributos das imagens durante a detecção e segmentação de 

bordas, especialmente em áreas com a presença de toras com cascas. 
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APÊNDICE A - Script 

 

# Script - Projeto Resíduos (Identificação e Quantificação de toras com dimensões 
comerciais) 

# Baixar MINICONDA - Atualizado (https://docs.conda.io/en/latest/miniconda.html) 

# Baixar PYTHON - Atualizado (https://www.python.org/downloads/) 

# Baixar VSCODE - Atualizado (https://code.visualstudio.com/download) 

Aqui estão algumas observações sobre as etapas do código: 

Instalação de bibliotecas: As bibliotecas necessárias estão sendo instaladas no início 
do código. Certifique-se de executar esses comandos apenas uma vez para evitar 
reinstalações desnecessárias. 

Processamento da imagem: O código realiza várias etapas de pré-processamento na 
imagem, como conversão para escala de cinza, aplicação de filtro Gaussiano, 
correção gamma, entre outros, para melhorar a detecção de bordas. 

Detecção de bordas: É utilizada a técnica de detecção de bordas Canny para 
identificar as bordas na imagem pré-processada. 

Identificação de objetos (toras): A transformada de Hough probabilística é aplicada 
para detectar as linhas que representam as toras na imagem. 

Reclassificação da imagem: A imagem é reclassificada para atribuir valores binários 
(0 ou 1) aos pixels que representam toras. 

Quantificação das toras: A área basal e o volume das toras são calculados com base 
nas geometrias detectadas. 

Salvamento dos resultados: Os resultados são salvos em um arquivo Excel, incluindo 
o comprimento, área basal e volume das toras, bem como o número total de toras. 

Verificação das influências das bandas espectrais: A influência das diferentes bandas 
RGB na segmentação de objetos é analisada e exibida em um gráfico de barras. 

Certifique-se de fornecer os caminhos corretos para as imagens de entrada e saída, 
bem como para o arquivo Excel onde os resultados serão salvos. Além disso, verifique 
se todas as bibliotecas necessárias estão instaladas corretamente. 

# Instalar bibliotecas e ferramentas necessárias para o processamento das imagens 
(uma vez somente) 

pip install pyparsing==2.4.7 

pip install pytesseract  

python -m django --versão # 2.0.2 

python3 -m django --versão # 2.0.2 

pip install --upgrade django 

pip3 install --upgrade django 
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python -m pip install -U scikit-image 

conda install scikit-image 

pip install scikit-image --upgrade 

conda install -c anaconda numpy 

# Solução de possível erro na biblioteca: numpy e skimage 
(https://stackoverflow.com/questions/54241226/importerror-cannot-import-name-
validate-lengths) 

pip install opencv-python 

pip3 install opencv-python  

pip install opencv-contrib-python 

python -m pip install matplotlib 

python -m pip install imageio 

conda install -c anaconda urllib3 

conda  install  mahotas 

pip  install mahotas 

conda install -c conda-forge gdal 

pip install shapely 

pip install ndimage 

#instalar cv2 (se necessário) (https://stackoverflow.com/questions/46610689/how-to-
import-cv2-in-python3) 

 

# Início do código para o processamento das imagens de drone 

# Terminal “cmd” no VSCode para acessar o ambiente Python: Importar as bibliotecas 
necessárias 

import numpy as np 

import numpy 

import cv2 

import cv2 as cv 

from gettext import install 

import io 

import mahotas 

from scipy import ndimage as ndi 

import matplotlib.pyplot as plt 
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import matplotlib.lines as mlines 

from matplotlib import image as image 

from skimage.io import imread 

from skimage.util import img_as_ubyte 

from skimage.feature import canny 

from skimage.draw import line 

from skimage.measure import label 

from skimage import data 

from skimage.transform import hough_line, hough_line_peaks 

from skimage.transform import probabilistic_hough_line 

from matplotlib import cm 

from skimage.io import imsave 

from PIL import Image 

import os 

import math 

from osgeo import gdal 

import shapely 

from shapely.geometry import Polygon 

import geopandas as gpd 

import pandas as pd 

from scipy import ndimage 

# Caminho da imagem (Diretório das imagens de trabalho - mudar sempre que 
necessário) 

path_img9 = r"C:\Users\Documents\SHP\map_recorte_60.tif" 

# Visualização prévia da imagem 

img_ori = imread(path_img9) 

plt.imshow(img_ori) 

plt.show() 

# Fazer a leitura da imagem (OpenCv2) para detecção de bordas 

imgcv = cv2.imread(path_img9, cv2.IMREAD_COLOR) #Imagem de trabalho 

# Ler dados georreferenciados da imagem pela ferramenta GDAL 

ds = gdal.Open(path_img9) #Imagem de trabalho 
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# Início da segmentação dos objetos, detecção de bordas  

# Converter a imagem em escala de cinza RGB pela “cv2.cvtColor” 

gray = cv2.cvtColor(imgcv, cv2.COLOR_BGR2GRAY) 

plt.imshow(gray) 

plt.show() 

# Filtro de suavização Gaussiano para melhorar a diferenciação de objetos (utilizar se 
a detecção de bordas pela escala cinza(gray) não foi suficiente ou tipo de solo/resíduo) 

blur = cv2.GaussianBlur(imgcv, (5,5), 0) 

plt.imshow(blur) 

plt.show() 

# Aplicar correção gamma (Filtro de brilho e contraste) 

gamma = 1.5 

invGamma = 1.0 / gamma 

table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 
256)]).astype("uint8") 

gamma_corr = cv2.LUT(blur, table) 

# Aplicar uma escala RGB para melhorar o contraste na imagem 

red = gamma_corr[:,:,2] 

green = gamma_corr[:,:,1] 

blue = gamma_corr[:,:,0] 

gray_gamma = cv2.addWeighted(red, 0.3, green, 0.3, 0) 

gray_gamma = cv2.addWeighted(gray_gamma, 0.4, blue, 0.3, 0) 

plt.imshow(gray_gamma) 

plt.show() 

# Aplicar índice de vegetação (NDVI) na imagem original para auxiliar na detecção de 
bordas (quando no solo há + vegetação e madeira) 

nir_band = ds.GetRasterBand(4).ReadAsArray().astype(np.float32)  

red_band = ds.GetRasterBand(3).ReadAsArray().astype(np.float32)  

ndvi = (nir_band - red_band) / (nir_band + red_band)  

ndvi[ndvi < 0] = 0 # Eliminar valores negativos  

ndvi[ndvi > 1] = 1 # Eliminar valores maiores que 1  

ndvi = (ndvi * 255).astype(np.uint8) # Converter para uint8 

plt.imshow(ndvi) 
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plt.show()  

#cv2.imwrite('caminho/para/ndvi.tif', ndvi) #Se for salvar o índice NDVI criado na 
imagem 

#Visualizar os valores mínimos e máximos da imagem a ser utilizada na função Canny 

hist, bins = np.histogram(gray.ravel(), bins=256, range=[0, 256]) 

min_value = np.argmax(hist > 0) 

max_value = 255 - np.argmax(hist[::-1] > 0) 

print("Valor mínimo:", min_value) 

print("Valor máximo:", max_value) 

# Detectar bordas na imagem utilizando “cv2.canny” – canny detector pela OpenCv 

edgess = cv2.Canny(gray_gamma, 150, 300, 5) #Valores minimos e máximos: 
precisam ser alterados para diferentes sistemas (valor max. certamente é borda, valor 
min. certamente não é borda)  

edges = cv2.dilate(edgess, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))) 
#Realçar as bordas (remover ruidos da imagem gerada) 

plt.imshow(edges) 

plt.show() 

# Salvar a imagem das bordas (para visualização posterior somente) 

cv2.imwrite(r"C:\Users\Arthur\OneDrive\Imagens 
Dexco\parcela_80\map_recorte_80_edges.tif", edges) #Alterar de acordo com o 
diretório 

 # Detectar pixels que formam as geometrias lineares (toras) – Identificação pela 
Transformada de Hough Probabilística “cv2.HoughLinesP” 

lines = cv2.HoughLinesP(edges, 1, np.pi/180, 100, minLineLength=50, 
maxLineGap=10) #Depende da imagem de borda (anterior) (Variar em 
minLineLength=100, maxLineGap=20)  

# Obter as informações de georreferenciamento da imagem para salvar a imagem 
gerada nas mesmas projeções 

# Recriar informações geoespaciais da imagem original 

band = ds.GetRasterBand(1) 

img = band.ReadAsArray() #Verificar depois com o HoughLinesP e Edges 

# Dados da imagem original (pixel, projeção, extensão e dimensão) 

geotransform = ds.GetGeoTransform() 

print(geotransform) 

geoproj = ds.GetProjection() 

print(geoproj) 
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x_size = band.XSize 

y_size = band.YSize 

print(x_size, y_size) 

# Criar uma imagem em branco com as mesmas dimensões e GeoTiff da imagem 
original (para salvar as toras detectadas) 

blank_image = np.zeros((y_size, x_size), np.uint8) 

blank_image = cv2.cvtColor(blank_image, cv2.COLOR_GRAY2RGB) 

for line in lines: 

    x1, y1, x2, y2 = line[0] 

    cv2.line(blank_image, (x1, y1), (x2, y2), (0, 255, 0), 2) #A partir da segmentação de 
objetos e bordas identificadas detecta os objetos semelhantes, ou seja as toras 
(geometria linear) 

# Reclassificar os pixels da “blank_image” em: 1 onde há toras e 0 onde não há toras  

reclass_image = np.zeros((y_size, x_size), np.uint8) 

for i in range(y_size): 

    for j in range(x_size): 

        if any(blank_image[i,j]): 

            reclass_image[i,j] = 1 

plt.imshow(reclass_image) 

plt.show() 

# Salvar imagem gerada (toras) com a atulização dos dados georreferenciados  

driver = gdal.GetDriverByName("GTiff") 

new_ds = driver.Create(r"C:\Users\Documents\SHP\map_reclass.tif", x_size, y_size, 
3, gdal.GDT_Byte) #Atualizar o diretório onde será salvo e nome do arquivo da 
imagem 

new_ds.SetGeoTransform(geotransform) #Resposta tem de ser '0' - sinal que foi 
gravado corretamente 

new_ds.SetProjection(geoproj) #Resposta tem de ser '0' - sinal que foi gravado 
corretamente 

new_ds.GetRasterBand(1).WriteArray(reclass_image) #Resposta tem de ser '0' - sinal 
que foi gravado corretamente 

new_ds.FlushCache() #Para salvar a imagem gerada e armazenar os dados 
georreferenciados corretamente 

# Visualizar a imagem final gerada 

dataset = gdal.Open(r"C:\Users\ Documents\SHP\map_reclass.tif") #Alterar para o 
diretório que a imagem de toras foi salva 
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band1 = dataset.GetRasterBand(1) #Como a imagem possui três bandas (poderia ser 
0, 1 ou 2 – tem de testar caso não rode no “1”) 

data1 = band1.ReadAsArray() 

plt.imshow(data1, cmap='gray') 

plt.show() 

#Quantidade de pixel na imagem 

print("Imagem Original:", x_size * y_size, "pixels") 

# verificar as informações georreferenciadas (status de compatibilidade) 

saved_image = dataset #Imagem aberta na etapa de visualização  

# Obter a transformação georreferenciada da imagem salva 

saved_transform = saved_image.GetGeoTransform() 

print(saved_transform) 

# Comparar a transformação da imagem salva com a da imagem original (tem de estar 
igual para posterior quantificação) 

if saved_transform == geotransform: 

    print('As informações georreferenciadas foram salvas corretamente.') 

else: 

    print('As informações georreferenciadas não foram salvas corretamente.') 

#Quantificar Área (m²), Área basal (m²) e Volume (m³) dos resíduos (toras) detectados 
na imagem (geometria lineares) 

#Área de ocupação dos resíduos na imagem 

area_toras_pixels = np.count_nonzero(reclass_image == 1) # Conta pixel com valor 1 
(toras) 

area_toras_metros_quadrados = area_toras_pixels * (res**2) # Calcular a área em 
metros quadrados 

print(area_toras_metros_quadrados) 

#Quantificar volumetria dos objetos (toras) 

# Converter a imagem reclassificada (reclass_image) em polígonos 

labeled, num_features = ndimage.label(reclass_image) 

polys = ndimage.find_objects(labeled) 

# Criar um GeoDataFrame para os polígonos (Como uma tabela de atributos para 
cada geometria linear detectada) 

polygons = [] 

for idx, p in enumerate(polys, start=1): 
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    coords = (p[1].start, p[0].start, p[1].stop, p[0].stop) 

    geom = Polygon([(coords[0], coords[1]), (coords[2], coords[1]), (coords[2], 
coords[3]), (coords[0], coords[3])]) 

    polygons.append({'id': idx, 'geometry': geom}) 

 

gdf = gpd.GeoDataFrame(polygons, crs=geoproj) 

# Calcular o comprimento de cada geometria 

gdf['comprimento_metros'] = gdf['geometry'].length/100 

print(gdf['comprimento_metros']) 

# Filtrar polígonos com comprimento maior ou igual a “1 metro” (Depende do nível de 
escala que for trabalhar 

gdf_filtered = gdf[gdf['comprimento_metros'] >= 1] 

print(gdf_filtered) 

# Calcular o diâmetro (DAP) com base na largura da geometria do objeto (polígono) 

gdf_filtered['DAP'] = (gdf_filtered['geometry'].apply(lambda geom: geom.bounds[2] - 
geom.bounds[0]))/10 

print(gdf_filtered['DAP']) 

# Calcular o comprimento em metros (só para reordenar) 

gdf_filtered['comprimento_metros'] = gdf_filtered['geometry'].length/100 

print(gdf_filtered['comprimento_metros']) 

#Contagem de toras 

# Definir o valor mínimo de comprimento desejado (em metros) 

comprimento_minimo = 1.0  # Altere conforme necessário 

# Filtrar o DataFrame gdf_filtered com base no comprimento mínimo 

toras_comprimento_superior = gdf_filtered[gdf_filtered['comprimento_metros'] > 
comprimento_minimo] 

# Contar o número de toras com comprimento superior ao valor mínimo 

numero_toras_comprimento_superior = len(toras_comprimento_superior) 

# Exibir o número de toras com comprimento superior ao valor mínimo 

print("Número de toras com comprimento superior a", comprimento_minimo, 
"metros:", numero_toras_comprimento_superior) 

# Calcular a área basal para cada geometria linear filtrada 

gdf_filtered['AreaBasal'] = ((np.pi * ((gdf_filtered['DAP'] / 2)**2))/40000)   # Área basal 
em m² 
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print(gdf_filtered['AreaBasal']) 

# Calcular o volume para cada geometria linear filtrada 

gdf_filtered['Volume'] = gdf_filtered['AreaBasal'] * 
(gdf_filtered['comprimento_metros'])  # Volume em metros cúbicos 

print(gdf_filtered['Volume']) 

# Calcular o somatório de área basal e volume para toda a imagem 

soma_area_basal = gdf_filtered['AreaBasal'].sum()  # Somatório da área basal em m² 

soma_volume = gdf_filtered['Volume'].sum()  # Somatório do volume em metros 
cúbicos 

 

# Criar um dicionário com os dados que serão inseridos na tabela de atributos do Excel 

dados_excel = { 

    'Comprimento (metros)': gdf_filtered['comprimento_metros'], 

    'Área Basal': gdf_filtered['AreaBasal'], 

    'Volume': gdf_filtered['Volume'], 

    'Número de Toras (comprimento > 1m)': [numero_toras_comprimento_superior] * 
len(gdf_filtered) 

} 

# Converter o dicionário em um DataFrame 

df_excel = pd.DataFrame(dados_excel) 

# Salvar o DataFrame em um arquivo Excel 

caminho_excel = r'C:\caminho\para\o\diretorio\dados_toras.xlsx' # Altere o caminho 
conforme necessário 

df_excel.to_excel(caminho_excel, index=False) 

print("Tabela de atributos salva em:", caminho_excel) 

 

#Verificar o volume e área basal total da imagem 

print("Somatório de Área Basal:", soma_area_basal, "m²/ha") 

print("Somatório de Volume:", soma_volume, "m³/ha") 

 

# Influência das bandas espectrais da imagem na segmentação de objetos - Definir 
qual tem maior intensidade 

# Carregue a imagem colorida 

image = cv2.imread(path_img93)  # Substitua pelo nome do caminho de sua imagem 
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# Divida a imagem em suas bandas RGB 

blue, green, red = cv2.split(image) 

# Aplique o detector de bordas Canny em cada banda separadamente 

canny_blue = cv2.Canny(blue, 100, 200)  # Ajuste os parâmetros conforme o tipo de 
atributo e imagem de trabalho (mesmo valor da etapa de detecção de bordas) 

canny_green = cv2.Canny(green, 100, 200) 

canny_red = cv2.Canny(red, 100, 200) 

# Calcule a média das intensidades de borda em cada banda 

mean_intensity_blue = np.mean(canny_blue) 

mean_intensity_green = np.mean(canny_green) 

mean_intensity_red = np.mean(canny_red) 

# Crie um gráfico de barras para mostrar as influências das bandas 

bandas = ['Azul', 'Verde', 'Vermelho'] 

intensidades = [mean_intensity_blue, mean_intensity_green, mean_intensity_red] 

plt.bar(bandas, intensidades) 

plt.xlabel('Banda RGB') 

plt.ylabel('Intensidade Média de Borda') 

plt.title('Influência das Bandas RGB na Segmentação de Objetos (Canny Edge)') 

plt.show() 
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